Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 13, pp 5323–5337 | Cite as

MALDI-TOF MS fingerprinting for identification and differentiation of species within the Fusarium fujikuroi species complex

  • Évelin F. Wigmann
  • Jürgen Behr
  • Rudi F. Vogel
  • Ludwig NiessenEmail author
Genomics, transcriptomics, proteomics

Abstract

Members of the Fusarium fujikuroi species complex (FFSC) are commonly involved in devastating diseases of many economically important plants. They invade developing seeds and other plant tissues in the field causing significant annual losses. In addition, fungal spoilage can also affect human and animal health because some species in this group, especially F. proliferatum and F. verticillioides, are mycotoxin producers occurring in food/feed worldwide. Since morphology-based species identification is of limited value in the FFSC, the development of new methods is fundamental for accurate identification of the molds to species level. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) analysis of subproteomes has been applied as a promising tool for the discrimination of closely related species in many microorganisms. In the present study, MALDI-TOF MS was applied to distinguish closely related species in the FFSC and to validate the effectiveness of a standardized protocol by identifying field isolates that fulfilled the morphological characteristics of FFSC species. Forty-nine of the currently described 61 species were identified by DNA sequencing analysis and their mass spectra were included as reference in a supplementary MALDI-TOF MS database. The discriminative potential of the database was evaluated with more than 80 non-reference FFSC isolates and resulted in 94.61% of correct identifications at the species level. We demonstrate that MALDI-TOF MS is a suitable and accurate technology for the identification and differentiation of species within the FFSC as well as an innovative, time-efficient alternative to multilocus sequencing technology (MLST).

Keywords

Mass spectrometry Fusarium spp. Spectral analysis DNA sequencing TEF1 gene 

Notes

Acknowledgments

This project was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 201391/2015-5. Fungal strains were provided to the study by Prof. Walter F.O. Marasas, Dr. Emma Steenkamp and Dr. Gerda Fourie (University of Pretoria, South Africa), Dr. Helgard I. Nirenberg (Julius-Kühn-Institut, Berlin, Germany), Prof. Dr. Siegfried Scherer (Technical University of Munich, Germany), Dr. Antonio Logrieco and Dr. Giancarlo Perrone (Institute of Sciences of Food Production, Bari, Italy), Dr. Rolf Geisen (Max-Rubner-Institut, Karlsruhe, Germany), Prof. Dr. Ludwig Pfenning (Universidade Federal de Lavras, Brazil), Dr. Melvin Bolton (United States Department of Agriculture, Fargo, USA), Dr. Mathew Laurence (Royal Botanical Gardens, Sydney, Australia), Dr. Adriana Jacobs-Venter (Agricultural Research Council, Pretoria, South Africa), and ARS Culture Collection (NRRL, United States Department of Agriculture, Peoria, USA). We are grateful to Dr. Maik Hilgarth for his help and advice in bioinformatics.

Funding information

This study was partially funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 201391/2015-5.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2019_9794_MOESM1_ESM.pdf (834 kb)
ESM 1 (PDF 833 kb)

References

  1. Abreu LM, Moreira GM, Ferreira D, Rodrigues-Filho E, Pfenning LH (2014) Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry. Fungal Biol 118(12):1004–1012CrossRefGoogle Scholar
  2. Al-Hatmi AM, van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF (2014) Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother 70:1068–1071Google Scholar
  3. Al-Hatmi AM, Normand A-C, van Diepeningen AD, Hendrickx M, de Hoog GS, Piarroux R (2015) Rapid identification of clinical members of Fusarium fujikuroi complex using MALDI-TOF MS. Future Microbiol 10:1939–1952CrossRefGoogle Scholar
  4. Al-Hatmi AM, Mirabolfathy M, Hagen F, Normand A-C, Stielow JB, Karami-Osbo R, Van Diepeningen AD, Meis JF, De Hoog GS (2016) DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biol 120:265–278CrossRefGoogle Scholar
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  6. Beccari G, Arellano C, Covarelli L, Tini F, Sulyok M, Cowger C (2019) Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int J Food Microbiol 290:214–225CrossRefGoogle Scholar
  7. Becker PT, de Bel A, Martiny D, Ranque S, Piarroux R, Cassagne C, Detandt M, Hendrickx M (2014) Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol 52:826–834CrossRefGoogle Scholar
  8. Becker PT, Stubbe D, Claessens J, Roesems S, Bastin Y, Planard C, Cassagne C, Piarroux R, Hendrickx M (2015) Quality control in culture collections: confirming identity of filamentous fungi by MALDI-TOF MS. Mycoscience 56:273–279CrossRefGoogle Scholar
  9. Bryla M, Rosyko M, Szymczyk K, Jedrzejczak R, Obiedzinski MW (2016) Fumonisins and their masked forms in maize products. Food Control 59:619–627CrossRefGoogle Scholar
  10. Cassagne C, Cella A-L, Suchon P, Normand A-C, Ranque S, Piarroux R (2013) Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med Mycol 51:371–377CrossRefGoogle Scholar
  11. Cendoya E, Chiotta ML, Zachetii V, Chulze SN, Ramirez ML (2018) Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: a review. J Cereal Sci 80:158–166CrossRefGoogle Scholar
  12. Chalupová J, Raus M, Sedlářová M, Šebela M (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32:230–241CrossRefGoogle Scholar
  13. Choi J, Lee S, Nah J, Kim H, Paek J, Lee S, Ham H, Hong SK, Yun S, Lee T (2018) Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int J Food Microbiol 267:62–69CrossRefGoogle Scholar
  14. Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chem Acta 391:127–134CrossRefGoogle Scholar
  15. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, Posteraro B (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50:2479–2483CrossRefGoogle Scholar
  16. Dong H, Kemptner J, Marchetti-Deschmann M, Kubicek CP, Allmaier G (2009) Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Anal Bioanal Chem 395:1373–1383CrossRefGoogle Scholar
  17. Edwards J, Auer D, De A S-k, Summerell B, Aoki T, Proctor RH, Busman M, O’Donnell K (2016) Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia 108:981–992CrossRefGoogle Scholar
  18. Fushiki T, Fujisawa H, Eguchi S (2006) Identification of biomarkers from mass spectrometry data using a “common” peak approach. BMC Bioinformatics 7:358CrossRefGoogle Scholar
  19. Gálvez L, Urbaniak M, Waskiewicz A, Stepien L, Palmeto D (2017) Fusarium proliferatum—causal agent of garlic bulb rot in Spain: genetic viability and mycotoxin production. Food Microbiol 67:41–48CrossRefGoogle Scholar
  20. Gruenwald M, Rabenstein A, Remesch M, Kuever J (2015) MALDI-TOF mass spectrometry fingerprinting: a diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata. J Microbiol Methods 115:83–88CrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR Jr (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Investig 2:217–221CrossRefGoogle Scholar
  23. Herron DA, Wingfield MJ, Wingfield BD, Rodas C, Marincowitz S, Steenkamp ET (2015) Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Stud Mycol 80:131–150CrossRefGoogle Scholar
  24. Hou T-Y, Chiang-Ni C, Teng S-H (2019) Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal in pressGoogle Scholar
  25. IARC (2002) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, & International Agency for Research on Cancer. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene (No. 82). World Health Organization. Lyon, FranceGoogle Scholar
  26. Jacobs A, Van Wyk PS, Marasas WF, Wingfield BD, Wingfield MJ, Coutinho TA (2010) Fusarium ananatum sp. nov. in the Gibberella fujikuroi species complex from pineapples with fruit rot in South Africa. Fung Biol 114:515–527CrossRefGoogle Scholar
  27. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefGoogle Scholar
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549CrossRefGoogle Scholar
  29. Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers 34:1–21Google Scholar
  30. Laurence M, Walsh J, Shuttleworth L, Robinson D, Johansen R, Petrovic T, Vu T, Burgess L, Summerell B, Liew E (2016) Six novel species of Fusarium from natural ecosystems in Australia. Fungal Divers 77:349–366CrossRefGoogle Scholar
  31. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Professional, Ames, IACrossRefGoogle Scholar
  32. Leyva-Madrigal KY, Larralde-Corona CP, Apodaca-Sánchez MA, Quiroz-Figueroa FR, Mexia-Bolaños PA, Portillo-Valenzuela S, Ordaz-Ochoa J, Maldonado-Mendoza IE (2015) Fusarium species from the Fusarium fujikuroi species complex involved in mixed infections of maize in Northern Sinaloa, Mexico. J Phytopathol 163:486–497CrossRefGoogle Scholar
  33. Lima N, Santos C (2017) MALDI-TOF MS for identification of food spoilage filamentous fungi. Curr Opin Food Sci 13:26–30CrossRefGoogle Scholar
  34. Luethy PM, Zelazny AM (2018) Rapid one-step extraction method for the identification of molds using MALDI-TOF MS. Diagn Microbiol Infect Dis 91(2):130–135CrossRefGoogle Scholar
  35. Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Di Nicola M, Di Ilio C, Federici G, Sacchetta P, Comani S, Urbani A (2007) LIMPIC: a computational method for the separation of protein MALDI-TOF MS signals from noise. BMC Bioinformatics 8:101CrossRefGoogle Scholar
  36. Marasas WFO, Kellerman TS, Gelderblom WC, Thiel P, Van der Lugt JJ, Coetzer JA (1988) Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J Vet Res 55:197–203Google Scholar
  37. Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Waes JG, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716CrossRefGoogle Scholar
  38. Marinach-Patrice C, Lethuillier A, Marly A, Brossas J-Y, Gene J, Symoens F, Datry A, Guarro J, Mazier D, Hennequin C (2009) Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect 15:634–642CrossRefGoogle Scholar
  39. Migheli Q, Balmas V, Harak H, Sanna S, Scherm B, Aoki T, O’Donnell K (2010) Molecular phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in northern and central Italy. J Clin Microbiol 48:1076–1084CrossRefGoogle Scholar
  40. Moretti A, Mulè G, Ritieni A, Logrieco A (2017) Further data on the production of beauvericin, enniatins and fusaproliferin and toxicity to Artemia salina by Fusarium species of Gibberella fujikuroi species complex. Int J Food Microbiol 118:158–163CrossRefGoogle Scholar
  41. Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762CrossRefGoogle Scholar
  42. Niessen ML, Vogel RF (1997) Specific identification of Fusarium graminearum by PCR with gaoA targeted primers. Syst Appl Microbiol 20:111–123CrossRefGoogle Scholar
  43. Nirenberg HI (1981) A simplified method for identifying Fusarium spp. occurring on wheat. Can J Bot 59:1599–1609CrossRefGoogle Scholar
  44. Normand A, Becker P, Gabriel F, Cassagne C, Accoceberry I, Gari-Toussaint M, Hasseine L, De Geyter D, Pierard D, Surmont I (2017) Online identification of fungi using MALDI-TOF mass spectrometry: validation of a new web application. J Clin Microbiol 55:2661–2670CrossRefGoogle Scholar
  45. O’Donnell K, Cigelnik E, Nirenberg HI (1998a) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493CrossRefGoogle Scholar
  46. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998b) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci 95:2044–2049CrossRefGoogle Scholar
  47. Panda A, Ghosh AK, Mirdha BR, Xess I, Paul S, Samantaray JC, Srinivasan A, Khalil S, Rastogi N, Dabas Y (2015) MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J Microbiol Methods 109:93–105CrossRefGoogle Scholar
  48. Piacentini KC, Savi GD, Pereira MEV, Scussel VM (2015) Fungi and the natural occurence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chem 187:204–209CrossRefGoogle Scholar
  49. Pitt JI (2009) The ecology of fungal food spoilage. In: Pit JI, Hocking AD (eds) Fungi and food spoilage. Springer, Boston, MA, pp 3–9CrossRefGoogle Scholar
  50. Quéro L, Girard V, Pawtowski A, Tréguer S, Weill A, Arend S, Cellière B, Polsinelli S, Monnin V, Van Belkum A (2018) Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiol in pressGoogle Scholar
  51. Quintilla R, Kolecka A, Casaregola S, Daniel HM, Houbraken J, Kostrzewa M, Boekhout T, Groenewald M (2018) MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi. Int J Food Microbiol 266:109–118CrossRefGoogle Scholar
  52. Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, Gari-Toussaint M, Fourquet P, Hendrickx M, Piarroux R (2014) MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 57:135–140CrossRefGoogle Scholar
  53. Rheeder J, Marasas W, Thiel P, Sydenham E, Shephard G, Van Schalkwyk D (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82:353–357CrossRefGoogle Scholar
  54. Riat A, Hinrikson H, Barras V, Fernandez J, Schrenzel J (2015) Confident identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without subculture-based sample preparation. Int J Infect Dis 35:43–45CrossRefGoogle Scholar
  55. Rico-Munoz E, Samson RA, Houbraken J (2018) Mould spoilage of foods and beverages: using the right methodology. Food Micro, in pressGoogle Scholar
  56. Sandoval-Denis M, Swart WJ, Crous PW (2018) New Fusarium species from the Kruger National Park, South Africa. MycoKeys 34:63–92CrossRefGoogle Scholar
  57. Sanitá-Lima M, de Lucas RC, Lima N, Polizeli MLT, Santos C (2019) Fungal community ecology using MALDI-TOF MS demands curated mass spectral databases. Front Microbiol 10:315CrossRefGoogle Scholar
  58. Schmidt O, Kallow W (2005) Differentiation of indoor wood decay fungi with MALDI-TOF mass spectrometry. Holzforschung 59(3):374–377CrossRefGoogle Scholar
  59. Seyfarth F, Ziemer M, Sayer HG, Burmester A, Erhard M, Welker M, Schliemann S, Straube E, Hipler UC (2008) The use of ITS DNA sequence analysis and MALDI-TOF mass spectrometry in diagnosing an infection with Fusarium proliferatum. Exp Dermatol 17:965–971CrossRefGoogle Scholar
  60. Siller-Ruiz M, Hernández-Egido S, Sánchez-Juanes F, González-Buitrago JM, Munoz-Bellido JL (2017) Fast methods of fungal and bacterial identification. MALDI-TOF mass spectrometry, chromogenic media. Enferm Infecc Microbiol Clin 35(5):303–313CrossRefGoogle Scholar
  61. Stępień Ł, Koczyk G, Waśkiewicz A (2011) Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J Appl Genet 52:487–496CrossRefGoogle Scholar
  62. Sun G, Wang S, Hu X, Su J, Huang T, Yu J, Tang L, Gao W, Wang JS (2007) Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit Contam 24:181–185CrossRefGoogle Scholar
  63. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl acids research 22(22):4673–4680CrossRefGoogle Scholar
  65. Triest D, Stubbe D, De Cremer K, Piérard D, Normand A-C, Piarroux R, Detandt M, Hendrickx M (2014) Use of matrix assisted laser desorption ionization time-of-flight mass spectrometry for identification of molds of the Fusarium genus. J Clin Microbiol 53:465–476CrossRefGoogle Scholar
  66. Ueno Y, Iijima K, Wang S-D, Sugiura Y, Sekijima M, Tanaka T, Chen C, Yu S-Z (1997) Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem Toxicol 35:1143–1150CrossRefGoogle Scholar
  67. Ulrich S, Biermaier B, Bader O, Wolf G, Straubinger RK, Didier A, Sperner B, Schwaiger K, Gareis M, Gottschalk C (2016) Identification of Stachybotrys spp. by MALDI-TOF mass spectrometry. Anal Bioanal Chem 408(27):7565–7581CrossRefGoogle Scholar
  68. Usbeck JC, Wilde C, Bertrand D, Behr J, Vogel RF (2014) Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 98:3737–3752CrossRefGoogle Scholar
  69. Vismer HF, Shephard GS, Westhuizen L, Mngqawa P, Bushula-Njah V, Leslie JF (2019) Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro. Int J Food Microbiol 296:31–36CrossRefGoogle Scholar
  70. Wang X, Zhu W, Pradhan K, Ju C, Ma Y, Semmes OJ, Glimm J, Mitchell J (2006) Feature extraction in the analysis of proteomic mass spectra. Proteomics 6(7):2095–2100CrossRefGoogle Scholar
  71. Wilson TM, Ross PF, Rice LG, Osweiler GD, Nelson HA, Owens DL, Plattner RD, Reggiardo C, Noon TH, Pickrell JW (1990) Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. J Vet Diagn Investig 2:213–216CrossRefGoogle Scholar
  72. Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21CrossRefGoogle Scholar
  73. Wulff EG, Sørensen JL, Lübeck M, Nielsen KF, Thrane U, Torp J (2010) Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol 12:649–657CrossRefGoogle Scholar
  74. Yasui Y, McLerran D, Adam BL, Winget M, Thornquist M, Feng Z (2003) An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers. J Biomed Biotechnol 2003(4):242–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Évelin F. Wigmann
    • 1
  • Jürgen Behr
    • 1
    • 2
  • Rudi F. Vogel
    • 1
  • Ludwig Niessen
    • 1
    Email author
  1. 1.Lehrstuhl für Technische MikrobiologieTechnische Universität MünchenFreisingGermany
  2. 2.Leibniz-Institut für Lebensmittel-SystembiologieTechnischen Universität MünchenFreisingGermany

Personalised recommendations