Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications

  • Hirokazu SuzukiEmail author


Azoreductases reductively cleave azo linkages by using NAD(P)H as an electron donor. The enzymes are widely found in bacteria and act on numerous azo dyes, which allow various unique applications. This review describes primary amino acid sequences, structures, substrates, physiological roles, and biotechnological applications of bacterial azoreductases to discuss their remarkable diversification. According to primary sequences, azoreductases were classified phylogenetically into four main clades. Most members of clades I–III are flavoproteins, whereas clade IV members include flavin-free azoreductases. Clades I and II prefer NADPH and NADH, respectively, as electron donors, whereas other members generally use both. Several enzymes formed no clades; moreover, some bacteria produce azoreductases with longer primary structures than those hitherto identified, which implies further diversification of bacterial azoreductases. The crystal structures commonly reveal the Rossmann folds; however, ternary structures are moderately varied with different quaternary conformation. Although physiological roles are obscure, several azoreductases have been shown to act on metabolites such as flavins, quinones, and metal ions more efficiently than on azo dyes. Considering that many homologs exclusively act on these metabolites, it is possible that azoreductases are actually side activities of versatile reductases that act on various substrates with different specificities. In parallel, this idea raises the possibility that homologous enzymes, even if these are already defined as other types of reductases, widely harbor azoreductase activities. Although azoreductases for which their genes have been identified are not abundant, it may be simple to identify azoreductases of biotechnological importance that have novel substrate specificities.


Azo dye Classification Flavoprotein Oxidoreductase Reductase Nicotinamide 


Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals conducted by the author.


  1. Bafana A, Chakrabarti T (2008) Lateral gene transfer in phylogeny of azoreductase enzyme. Comput Biol Chem 32:191–197. CrossRefPubMedGoogle Scholar
  2. Bafana A, Chakrabarti T, Devi SS (2008) Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl Microbiol Biotechnol 77:1139–1144. CrossRefPubMedGoogle Scholar
  3. Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136. CrossRefPubMedGoogle Scholar
  4. Blümel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190. CrossRefPubMedGoogle Scholar
  5. Blümel S, Busse H, Stolz A, Kämpfer P (2001a) Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51:1831–1837. CrossRefPubMedGoogle Scholar
  6. Blümel S, Mark B, Busse H, Kämpfer P, Stolz A (2001b) Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenacea with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol 51:1867–1871. CrossRefPubMedGoogle Scholar
  7. Blümel S, Knackmuss H, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown SD, Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071. CrossRefPubMedGoogle Scholar
  9. Bürger S, Stolz A (2010) Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases. Appl Microbiol Biotechnol 87:2067–2076. CrossRefPubMedGoogle Scholar
  10. Canevari M, Castagliuolo I, Brun P, Cardin M, Schiavon M, Pasut G, Veronese FM (2009) Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. Int J Pharm 368:171–177. CrossRefPubMedGoogle Scholar
  11. Cao X, Di M, Wang J (2017) Expansion of the active site of the azoreductase from Shewanella oneidensis MR-1. J Mol Graph Model 78:213–220. CrossRefPubMedGoogle Scholar
  12. Carceller E, Salas J, Merlos M, Giral M, Ferrando R, Escamilla I, Ramis J, García–Rafanell J, Forn J (2001) Novel azo derivatives as prodrugs of 5-aminosalicylic acid and amino derivatives with potent platelet activating factor antagonist activity. J Med Chem 44:3001–3013. CrossRefPubMedGoogle Scholar
  13. Chalansonnet V, Mercier C, Orenga S, Gilbert C (2017) Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. BMC Microbiol 17:126. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen H, Wang R, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen H, Xu H, Kweon O, Chen S, Cerniglia CE (2008) Functional role of Trp-105 of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis. Microbiology 154:2659–2667. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen H, Feng JH, Kweon O, Xu H, Cerniglia CE (2010) Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24. BMC Biochem 11:13. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chengalroyen MD, Dabbs ER (2013) The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol 29:389–399. CrossRefPubMedGoogle Scholar
  20. Crescente V, Holland SM, Kashyap S, Polycarpou E, Sim E, Ryan A (2016) Identification of novel members of the bacterial azoreductase family in Pseudomonas aeruginosa. Biochem J 473:549–558. CrossRefPubMedGoogle Scholar
  21. Deller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gübitz GM, Macheroux P (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083–7091. CrossRefPubMedGoogle Scholar
  22. Eslami M, Amoozegar MA, Asad S (2016) Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int J Biol Macromol 85:111–116. CrossRefPubMedGoogle Scholar
  23. Feng J, Cerniglia CE, Chen H (2012a) Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci 1:568–586. CrossRefGoogle Scholar
  24. Feng J, Kweon O, Xu H, Cerniglia CE, Chen H (2012b) Probing the NADH- and methyl red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 520:99–107. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fouts JR, Kamm JJ, Brodie BB (1957) Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther 120:291–300. CrossRefPubMedGoogle Scholar
  27. Gao F, Ding H, Shao L, Xu X, Zhao Y (2015) Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes. Appl Microbiol Biotechnol 99:255–267. CrossRefPubMedGoogle Scholar
  28. Gonçalves AMD, Mendes S, de Sanctis D, Martins LO, Bento I (2013) The crystal structure of Pseudomonas putida azoreductase – the active site revisited. FEBS J 280:6643–6657.
  29. Green JRB, Lobo AJ, Holdsworth CD, Leicester RJ, Gibson JA, Kerr GD, Hodgson HJF, Parkins KJ, Taylor MD (1998) Balsalazide is more effective and better tolerated than mesalamine in the treatment of acute ulcerative colitis. Gastroenterology 114:15–22. CrossRefPubMedGoogle Scholar
  30. Han L, Liang B (2018) New approaches to NAD(P)H regeneration in the biosynthesis systems. World J Microbiol Biotechnol 34:141. CrossRefPubMedGoogle Scholar
  31. Hua J, Yu L (2019) Cloning and characterization of a flavin-free oxygen-insensitive azoreductase from Klebsiella oxytoca GS-4-08. Biotechnol 41:371–378.
  32. Ito K, Nakanishi M, Lee W, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. J Biol Chem 281:20567–20576. CrossRefPubMedGoogle Scholar
  33. Ito K, Nakanishi M, Lee W, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2008) Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283:13889–13896. CrossRefPubMedGoogle Scholar
  34. Jang M, Lee Y, Kim C, Lee J, Kang D, Kim S, Lee Y (2005) Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Appl Environ Microbiol 71:7955–7960. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jilani JA, Shomaf M, Alzoubi KH (2013) Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis. Drug Des Devel Ther 7:691–698. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Johansson HE, Johansson MK, Wong AC, Armstrong ES, Peterson EJ, Grant RE, Roy MA, Reddington MV, Cook RM (2011) BTI1, an azoreductase with pH-dependent substrate specificity. Appl Environ Microbiol 77:4223–4225. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kelley KD, Olive LQ, Hadziselimovic A, Sanders CR (2010) Look and see if it is time to induce protein expression in Escherichia coli cultures. Biochemistry 49:5405–5407. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim MH, Kim Y, Park H, Lee JS, Kwak S, Jung W, Lee S, Kim D, Lee Y, Oh T (2008) Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase. J Biol Chem 283:31981–31990. CrossRefPubMedGoogle Scholar
  39. Kobori T, Sasaki H, Lee WC, Zenno S, Saigo K, Murphy MEP, Tanokura M (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds. J Biol Chem 276:2816–2823. CrossRefPubMedGoogle Scholar
  40. Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyama M, Kimura A (2013) Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298–306. CrossRefPubMedGoogle Scholar
  42. Liger D, Graille M, Zhou C, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897. CrossRefPubMedGoogle Scholar
  43. Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y (2007a) Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 76:1271–1279. CrossRefPubMedGoogle Scholar
  44. Liu Z, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang B (2007b) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463:68–77. CrossRefPubMedGoogle Scholar
  45. Liu G, Zhou J, Jin R, Zhou M, Wang J, Lu H, Qu Y (2008a) Enhancing survival of Escherichia coli by expression of azoreductase AZR possessing quinone reductase activity. Appl Microbiol Biotechnol 80:409–416. CrossRefPubMedGoogle Scholar
  46. Liu G, Zhou J, Wang J, Yan B, Li J, Lu H, Qu Y, Jin R (2008b) Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides. Biotechnol Lett 30:869–875. CrossRefPubMedGoogle Scholar
  47. Liu G, Zhou J, Fu QS, Wang J (2009) The Escherichia coli azoreductase AzoR is involved in resistance to thiol-specific stress caused by electrophilic quinones. J Bacteriol 191:6394–6400. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Macwana SR, Punj S, Cooper J, Schwenk E, John GH (2010) Identification and isolation of an azoreductase from Enterococcus faecium. Curr Issues Mol Biol 12:43–48. CrossRefPubMedGoogle Scholar
  49. Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE (2016) Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol 36:639–651. CrossRefPubMedGoogle Scholar
  50. Maier J, Kandelbauer A, Erlacher A, Cavaco–Paulo A, Gübitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86:1431–1438. CrossRefPubMedGoogle Scholar
  52. Medina SH, Chevliakov MV, Tiruchinapally G, Durmaz YY, Kuruvilla SP, ElSayed MEH (2013) Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells. Biomaterials 34:4655–4666. CrossRefPubMedGoogle Scholar
  53. Mendes S, Pereira L, Batista C, Martins LO (2011) Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol 92:393–405. CrossRefPubMedGoogle Scholar
  54. Mercier C, Chalansonnet V, Orenga S, Gilbert C (2013) Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. J Appl Microbiol 115:1012–1022. CrossRefPubMedGoogle Scholar
  55. Misal SA, Gawai KR (2018) Azoreductase: a key player of xenobiotic metabolism. Bioresour Bioprocess 5:17. CrossRefGoogle Scholar
  56. Misal SA, Lingojwar DP, Gawai KR (2013) Properties of NAD(P)H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6. Protein J 32:601–608. CrossRefPubMedGoogle Scholar
  57. Misal SA, Lingojwar DP, Lokhande MN, Lokhande PD, Gawai KR (2014) Enzymatic transformation of nitro-aromatic compounds by a flavin-free NADH azoreductase from Lysinibacillus sphaericus. Biotechnol Lett 36:127–131. CrossRefPubMedGoogle Scholar
  58. Morrison JM, John GH (2015) Non-classical azoreductase secretion in Clostridium perfringens in response to sulfonated azo dye exposure. Anaerobe 34:34–43. CrossRefPubMedGoogle Scholar
  59. Morrison JM, Wright CM, John GH (2012) Identification, isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe 18:229–234. CrossRefPubMedGoogle Scholar
  60. Mugerfeld I, Law BA, Wickham GS, Thompson DK (2009) A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol 82:1131–1141. CrossRefPubMedGoogle Scholar
  61. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399. CrossRefPubMedGoogle Scholar
  62. Nishiya Y, Yamamoto Y (2007) Characterization of a NADH:dichloroindophenol oxidoreductase from Bacillus subtilis. Biosci Biotechnol Biochem 71:611–614. CrossRefPubMedGoogle Scholar
  63. Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Microbiol Biotechnol 75:377–386. CrossRefPubMedGoogle Scholar
  64. Ooi T, Shibata T, Matsumoto K, Kinoshita S, Taguchi S (2009) Comparative enzymatic analysis of azoreductases from Bacillus sp. B29. Biosci Biotechnol Biochem 73:1209–1211. CrossRefPubMedGoogle Scholar
  65. Punj S, John GH (2009) Purification and identification of an FMN-dependent NAD(P)H azoreductase from Enterococcus faecalis. Curr Issues Mol Biol 11:59–65. CrossRefPubMedGoogle Scholar
  66. Qi J, Schlömann M, Tischler D (2016) Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. J Mol Catal B Enzym 130:9–17. CrossRefGoogle Scholar
  67. Qi J, Paul CE, Hollmann F, Tischler D (2017) Changing the electron donor improves azoreductase dye degrading activity at neutral pH. Enzyme Microb Technol 100:17–19. CrossRefPubMedGoogle Scholar
  68. Qureshi AI, Cohen RD (2005) Mesalamine delivery systems: do they really make much difference? Adv Drug Deliv Rev 57:281–302. CrossRefPubMedGoogle Scholar
  69. Rafii F, Cerniglia CE (1993) Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl Environ Microbiol 59:1731–1734. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151PubMedPubMedCentralGoogle Scholar
  71. Rao J, Khan A (2013) Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J Am Chem Soc 135:14056–14059. CrossRefPubMedGoogle Scholar
  72. Rao J, Hottinger C, Khan A (2014) Enzyme-triggered cascade reactions and assembly of abiotic block copolymers into micellar nanostructures. J Am Chem Soc 136:5872–5875. CrossRefPubMedGoogle Scholar
  73. Roldán MD, Pérez–Reinado E, Castillo F, Moreno–Vivián C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500. CrossRefPubMedGoogle Scholar
  74. Ruiz JFM, Radics G, Windle H, Serra HO, Simplicío AL, Kedziora K, Fallon PG, Kelleher DP, Gilmer JF (2009) Design, synthesis, and pharmacological effects of a cyclization-activated steroid prodrug for colon targeting in inflammatory bowel disease. J Med Chem 52:3205–3211. CrossRefPubMedGoogle Scholar
  75. Ruiz JFM, Kedziora K, Keogh B, Maguire J, Reilly M, Windle H, Kelleher DP, Gilmer JF (2011) A double prodrug system for colon targeting of benzenesulfonamide COX-2 inhibitors. Bioorg Med Chem Lett 21:6636–6640. CrossRefPubMedGoogle Scholar
  76. Ruiz JFM, Kedziora K, O’Reilly M, Maguire J, Keogh B, Windle H, Kelleher DP, Gilmer JF (2012) Azo-reductase activated budesodine prodrugs for colon targeting. Bioorg Med Chem Lett 22:7573–7577. CrossRefGoogle Scholar
  77. Ryan A (2017) Azoreductases in drug metabolism. Br J Pharmacol 174:2161–2173. CrossRefPubMedGoogle Scholar
  78. Ryan A, Laurieri N, Westwood I, Wang C, Lowe E, Sim E (2010a) A novel mechanism for azoreduction. J Mol Biol 400:24–37. CrossRefPubMedGoogle Scholar
  79. Ryan A, Wang C, Laurieri N, Westwood I, Sim E (2010b) Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases. Protein Cell 1:780–790. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ryan A, Kaplan E, Laurieri N, Lowe E, Sim E (2011) Activation of nitrofurazone by azoreductases: multiple activities in one enzyme. Sci Rep 1(63).
  81. Ryan A, Kaplan E, Nebel J, Polycarpou E, Crescente V, Lowe E, Preston GM, Sim E (2014) Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes. PLoS One 9:e98551. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sakuma S, Lu Z, Kopečková P, Kopeček J (2001) Biorecognizable HPMA copolymer-drug conjugates for colon-specific delivery of 9-aminocamptothecin. J Control Release 75:365–379. CrossRefPubMedGoogle Scholar
  83. Sandhya S, Sarayu K, Uma B, Swaminathan K (2008) Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductase gene from Bacillus latrosporus RRK1. Bioresour Technol 99:2187–2191. CrossRefPubMedGoogle Scholar
  84. Shin N, Hanaoka K, Piao W, Miyakawa T, Fujisawa T, Takeuchi S, Takahashi S, Komatsu T, Ueno T, Terai T, Tahara T, Tanokura M, Nagano T, Urao Y (2017) Development of an azoreductase-based reporter system with synthetic fluorogenic substrates. ACS Chem Biol 12:558–563. CrossRefPubMedGoogle Scholar
  85. Shinagawa E (2011) Purification and characterization of Fe(III)-EDTA reductase from Bacillus sp. B-3. Biosci Biotechnol Biochem 75:2063–2065. CrossRefPubMedGoogle Scholar
  86. Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y (2006) Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci Biotechnol Biochem 70:1655–1665. CrossRefPubMedGoogle Scholar
  87. Suzuki H (2018) Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 102:10425–10437. CrossRefPubMedGoogle Scholar
  88. Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276:9059–9065. CrossRefPubMedGoogle Scholar
  89. Suzuki H, Abe T, Doi K, Ohshima T (2018) Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction. Appl Microbiol Biotechnol 102:9171–9181. CrossRefPubMedGoogle Scholar
  90. Tang J, Huang C, Shu J, Zheng J, Ma D, Li J, Yang R (2018) Azoreductase and target simultaneously activated fluorescent monitoring for cytochrome c release under hypoxia. Anal Chem 90:5865–5872. CrossRefPubMedGoogle Scholar
  91. Teruel AH, Pérez–Esteve É, González–Álvarez I, González–Álvarez M, Costero AM, Ferri D, Parra M, Gaviña P, Merino V, Martínez–Mañez R, Sancenón F (2018) Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: new approaches for inflammatory bowel diseases treatment. J Control Release 281:58–69. CrossRefPubMedGoogle Scholar
  92. Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Thompson DK, Hettich RL (2007) Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res 6:1745–1757. CrossRefPubMedGoogle Scholar
  93. Töwe S, Leelakriangsak M, Kobayashi K, Van Duy N, Hecker M, Zuber P, Antelmann H (2007) The MarR-type repressor MhqR (YkvE) regulates multiple dioxyaenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol Microbiol 66:40–54. CrossRefPubMedGoogle Scholar
  94. Van den Mooter G, Samyn C, Kinget R (1994) The relation between swelling properties and enzymatic degradation of azo polymers designed for colon-specific drug delivery. Pharm Res 11:1737–1741. CrossRefPubMedGoogle Scholar
  95. Vorontsov II, Minasov G, Brunzelle JS, Shuvalova L, Kiryukhina O, Collart FR, Anderson WF (2007) Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci 16:2483–2490. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wang C, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228. CrossRefPubMedGoogle Scholar
  97. Wang C, Laurieri N, Abuhammad A, Lowe E, Westwood I, Ryan A, Sim E (2010) Role of tyrosine 131 in the active site of paAzoR1, an azoreductase with specificity for the inflammatory bowel disease prodrug balsalazide. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:2–7. CrossRefPubMedGoogle Scholar
  98. Whangsuk W, Toewiwat N, Dubbs J, Sallabhan R, Mongkolsuk S, Loprasert S (2018) Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochem Biophys Res Commun 502:9–14. CrossRefPubMedGoogle Scholar
  99. Yang Y, Lu L, Gao F, Zhao Y (2013a) Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1. Environ Sci Pollut Res 20:3232–3239. CrossRefGoogle Scholar
  100. Yang Y, Wei B, Zhao Y, Wang J (2013b) Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal. Bioresour Technol 130:517–521. CrossRefPubMedGoogle Scholar
  101. Ye J, Yang H, Rosen BP, Bhattacharjee H (2007) Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 581:3996–4000. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Yu J, Ogata D, Gai Z, Taguchi S, Tanaka I, Ooi T, Yao M (2014) Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Acta Crystallogr D Struct Biol 70:553–564. CrossRefGoogle Scholar
  103. Yu L, Zhang X, Xie T, Hu J, Wang S, Li W (2015) Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain. Appl Microbiol Biotechnol 99:2431–2439. CrossRefPubMedGoogle Scholar
  104. Zbaida S, Levine WG (1990) Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P450. Biochem Pharmacol 40:2415–2423. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringTottori UniversityTottoriJapan
  2. 2.Center for Research on Green Sustainable ChemistryTottori UniversityTottoriJapan

Personalised recommendations