Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 13, pp 5269–5283 | Cite as

Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity

  • Dongmin Liu
  • Beibei Wen
  • Kun Zhu
  • Yong Luo
  • Juan Li
  • Yinhua Li
  • Haiyan Lin
  • Jianan HuangEmail author
  • Zhonghua LiuEmail author
Applied genetics and molecular biotechnology

Abstract

Gut microbiota play a key role in the regulation of obesity and associated metabolic disorders. To study the relationship between them, antibiotics have been widely used to generate pseudo-germ-free rodents as control models. However, it is not clear whether antibiotics impact an animal’s metabolic phenotype. Therefore, the effect of antibiotics-induced gut microbial perturbations on metabolic phenotypes in high-fat diet (HFD) fed mice was investigated. The results showed that antibiotics perturbed gut microbial composition and structure. Community diversity and richness were reduced, and the phyla Firmicutes/Bacteroidetes (F/B) ratio was decreased by antibiotics. Visualization of Unifrac distance data using principal component analysis (PCA) and unweighted pair-group method with arithmetic mean (UPGAM) demonstrated that fecal samples of HFD-fed mice separated from those of chow diet (CD) fed mice. Fecal samples from antibiotics-treated and non-treated mice were clustered into two different microbial populations. Moreover, antibiotics suppressed HFD-induced metabolic features, including body weight gain (BWG), liver weight (LW), epididymal fat weight (EFW), and serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), fasting blood glucose (FBG), and insulin (INS) significantly (P < 0.05). Lachnospiraceae, Ruminiclostridium and Helicobacter, biomarkers of mouse gut microbiota before treatment by antibiotics, were positively correlated with obesity phenotypes significantly (P < 0.05) and were decreased by (92.95 ± 5.09) %, (97.73 ± 2.09) % and (99.48 ± 0.21) % respectively after 30 days of treatment by antibiotics. However, Bacteroidia were enriched in HFD-fed antibiotics-treated mice and were negatively correlated with obesity phenotypes significantly (P < 0.05). We suggested that the antibiotics-induced depletion of Lachnospiraceae, Ruminiclostridium, and Helicobacter, and the decrease in F/B ratio in gut microbiota played a role in the prevention of HFD-induced obesity in mice.

Keywords

Antibiotics Gut microbiota Metabolic phenotype Obesity HFD (high fat diet) 

Notes

Funding

The authors wish to thank the Key Laboratory of Ministry of Education for Tea Science in China and the National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients in China for their financial support. This study was supported by the National Major R & D Project in China (2017YFD0400803) and China Tea Research System Project (CARS19-09B).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal protocol used in this study was approved by the Animal Care Committee at Hunan Agricultural University and performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the Ministry of Health, People’s Republic of China.

References

  1. Al-Assal K, Martinez AC, Torrinhas RS, Cardinelli C, Waitzberg D (2018) Gut microbiota and obesity. Clin Nutr Exp 20:60–64.  https://doi.org/10.1016/j.yclnex.2018.03.001 Google Scholar
  2. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883.  https://doi.org/10.1136/gutjnl-2014-307142 Google Scholar
  3. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703.  https://doi.org/10.1016/j.chom.2015.04.004 Google Scholar
  4. Bianchi F, Larsen N, Tieghi TD, Adorno MAT, Kot W, Saad SMI, Jespersen L, Sivieri K (2018) Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Appl Microbiol Biotechnol 102(20):8827–8840.  https://doi.org/10.1007/s00253-018-9234-8 Google Scholar
  5. Bluemel S, Williams B, Knight R, Schnabl B (2016) Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol-Gastr L 311(6):G1018–G1036.  https://doi.org/10.1152/ajpgi.00245.2016 Google Scholar
  6. Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17(1):72–84.  https://doi.org/10.1016/j.chom.2014.11.010 Google Scholar
  7. Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P, Vassallo J, Dias JC, Kubota LT, Carvalheira JBC, Saad MJA (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55(10):2823–2834.  https://doi.org/10.1007/s00125-012-2648-4 Google Scholar
  8. Chen G, Xie M, Wan P, Chen D, Dai Z, Ye H, Hu B, Zeng X, Liu Z (2018) Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota. J Agric Food Chem 66(11):2783–2795.  https://doi.org/10.1021/acs.jafc.8b00296 Google Scholar
  9. Chen GY, Shaw MH, Redondo G, Nunez G (2008) The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 68(24):10060–10067.  https://doi.org/10.1158/0008-5472.CAN-08-2061 Google Scholar
  10. Ciciliot S, Albiero M, Campanaro S, Poncina N, Tedesco S, Scattolini V, Dalla Costa F, Cignarella A, Vettore M, Di Gangi IM, Bogialli S, Avogaro A, Fadini GP (2018) Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance. FASEB J 32(7):4004–4015.  https://doi.org/10.1096/fj.201701409R Google Scholar
  11. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Rodriguez JGZ, Rogers AB, Robine N, Loke P, Blaser MJ (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158(4):705–721.  https://doi.org/10.1016/j.cell.2014.05.052 Google Scholar
  12. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350(6261):663–669.  https://doi.org/10.1126/science.aad2602 Google Scholar
  13. Dahiya DK, Renuka PM, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol 8:563–580.  https://doi.org/10.3389/fmicb.2017.00563 Google Scholar
  14. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, Huson DH, Bischoff SC (2015) Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int 2015:806248–806260.  https://doi.org/10.1155/2015/806248 Google Scholar
  15. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96.  https://doi.org/10.1016/j.cell.2013.12.016 Google Scholar
  16. Donohoe CL, Lysaght J, O'Sullivan J, Reynolds JV (2017) Emerging concepts linking obesity with the hallmarks of cancer. TEM 28(1):46–62.  https://doi.org/10.1016/j.tem.2016.08.004 Google Scholar
  17. Duraffourd C, De Vadder F, Goncalves D, Delaere F, Penhoat A, Brusset B, Rajas F, Chassard D, Duchampt A, Stefanutti A, Gautier-Stein A, Mithieux G (2012) Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 150(2):377–388.  https://doi.org/10.1016/j.cell.2012.05.039 Google Scholar
  18. Ellekilde M, Selfjord E, Larsen CS, Jakesevic M, Rune I, Tranberg B, Vogensen FK, Nielsen DS, Bahl MI, Licht TR, Hansen AK, Hansen CH (2014) Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep 4:5922–5930.  https://doi.org/10.1038/srep05922 Google Scholar
  19. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9(3):e92193–e92207.  https://doi.org/10.1371/journal.pone.0092193 Google Scholar
  20. Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, Zhu M, Li J, Li N (2017) Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 15(1):13–22.  https://doi.org/10.1186/s12967-016-1105-4 Google Scholar
  21. Gerard P (2016) Gut microbiota and obesity. Cell Mol Life Sci 73(1):147–162.  https://doi.org/10.1007/s00018-015-2061-5 Google Scholar
  22. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258.  https://doi.org/10.1038/nature11465 Google Scholar
  23. Grover M, Kashyap PC (2014) Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil 26(6):745–748.  https://doi.org/10.1111/nmo.12366 Google Scholar
  24. Hansen AK, Krych L, Nielsen DS, Hansen CHF (2015) A review of applied aspects of dealing with gut microbiota impact on rodent models. ILAR J 56(2):250–264.  https://doi.org/10.1093/ilar/ilv010 Google Scholar
  25. Hu X, Wang T, Liang S, Li W, Wu X, Jin F (2015) Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet. Appl Microbiol Biotechnol 99(21):9111–9122.  https://doi.org/10.1007/s00253-015-6753-4 Google Scholar
  26. Hu Y, Wong FS, Wen L (2017) Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol Res 119:219–226.  https://doi.org/10.1016/j.phrs.2017.01.034 Google Scholar
  27. Janssen AWF, Dijk W, Boekhorst J, Kuipers F, Groen AK, Lukovac S, Hooiveld GJEJ, Kersten S (2017) ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. BBA-Mol Cell Biol L 1862(10):1056–1067.  https://doi.org/10.1016/j.bbalip.2017.07.005 Google Scholar
  28. Josefsdottir KS, Baldridge MT, Kadmon CS, King KY (2017) Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 129(6):729–739.  https://doi.org/10.1182/blood-2016-03-708594 Google Scholar
  29. Just S (2017) Impact of the interplay between bile acids, lipids, intestinal coriobacteriaceae and diet on host metabolism. MünchenGoogle Scholar
  30. Kusumoto Y, Irie J, Iwabu K, Tagawa H, Itoh A, Kato M, Kobayashi N, Tanaka K, Kikuchi R, Fujita M, Nakajima Y, Morimoto K, Sugizaki T, Yamada S, Kawai T, Watanabe M, Oike Y, Itoh H (2017) Bile acid binding resin prevents fat accumulation through intestinal microbiota in high-fat diet-induced obesity in mice. Metabolism 71:1–6.  https://doi.org/10.1016/j.metabol.2017.02.011 Google Scholar
  31. Le Roy CI, Woodward MJ, Ellis RJ, La Ragione RM, Claus SP (2019) Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet Res 15(1):37–50.  https://doi.org/10.1186/s12917-018-1761-0 Google Scholar
  32. Lee SH, An JH, Lee HJ, Jung BH (2012) Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm Drug Dispos 33(6):292–303.  https://doi.org/10.1002/bdd.1799 Google Scholar
  33. Leong KSW, Derraik JGB, Hofman PL, Cutfield WS (2018) Antibiotics, gut microbiome and obesity. Clin Endocrinol 88(2):185–200.  https://doi.org/10.1111/cen.13495 Google Scholar
  34. Lomasney KW, Houston A, Shanahan F, Dinan TG, Cryan JF, Hyland NP (2014) Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon. Neurogastroenterol Motil 26(6):887–890.  https://doi.org/10.1111/nmo.12328 Google Scholar
  35. Luczynski P, Neufeld KAM, Oriach CS, Clarke G, Dinan TG, Cryan JF (2016) Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 19(8):1–17.  https://doi.org/10.1093/ijnp/pyw020 Google Scholar
  36. Luo J, Jin F (2014) Recent advances in understanding the impact of intestinal microbiota on host behavior. Chin Sci Bull 59(22):2169–2190doi.  https://doi.org/10.1360/n972014-00120 Google Scholar
  37. Marginean CO, Marginean C, Melit LE (2018) New insights regarding genetic aspects of childhood obesity: a minireview. Front Pediatr 6(271):1–8.  https://doi.org/10.3389/fped.2018.00271 Google Scholar
  38. Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H (2018) Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev 39(2):133–153.  https://doi.org/10.1210/er.2017-00192 Google Scholar
  39. Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Mace K, Chou CJ (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7):2416–2426.  https://doi.org/10.1096/fj.07-102723 Google Scholar
  40. Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Invest 124(10):4212–4218.  https://doi.org/10.1172/JCI72333 Google Scholar
  41. Mokkala K, Roytio H, Munukka E, Pietila S, Ekblad U, Ronnemaa T, Eerola E, Laiho A, Laitinen K (2016) Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. J Nutr 146(9):1694–1700.  https://doi.org/10.3945/jn.116.235358 Google Scholar
  42. Parseus A, Sommer N, Sommer F, Caesar R, Molinaro A, Stahlman M, Greiner TU, Perkins R, Backhed F (2017) Microbiota-induced obesity requires farnesoid X receptor. Gut 66(3):429–437.  https://doi.org/10.1136/gutjnl-2015-310283 Google Scholar
  43. Pearl RL, Wadden TA, Allison KC, Chao AM, Alamuddin N, Berkowitz RI, Walsh O, Tronieri JS (2018) Causal attributions for obesity among patients seeking surgical versus behavioral/pharmacological weight loss treatment. Obes Surg 28(11):3724–3728.  https://doi.org/10.1007/s11695-018-3490-7 Google Scholar
  44. Portune KJ, Benitez-Paez A, Del Pulgar EM, Cerrudo V, Sanz Y (2017) Gut microbiota, diet, and obesity-related disorders-the good, the bad, and the future challenges. Mol Nutr Food Res 61(1):1–38.  https://doi.org/10.1002/mnfr.201600252 Google Scholar
  45. Principi N, Esposito S (2016) Antibiotic administration and the development of obesity in children. Int J Antimicrob Ag 47(3):171–177.  https://doi.org/10.1016/j.ijantimicag.2015.12.017 Google Scholar
  46. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241.  https://doi.org/10.1016/j.cell.2004.07.002 Google Scholar
  47. Rastelli M, Knauf C, Cani PD (2018) Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity 26(5):792–800.  https://doi.org/10.1002/oby.22175 Google Scholar
  48. Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, Holst JJ, Lenaerts K, Kootte RS, Nieuwdorp M, Groen AK, Olde Damink SW, Boekschoten MV, Smidt H, Zoetendal EG, Dejong CH, Blaak EE (2016) Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab 24(1):63–74.  https://doi.org/10.1016/j.cmet.2016.06.016 Google Scholar
  49. Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, McCoy KD, Macpherson AJ, Meza-Zepeda LA, Johansen FE (2011) Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 6(3):e17996–e18009.  https://doi.org/10.1371/journal.pone.0017996 Google Scholar
  50. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Treuren WV, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214–1241226.  https://doi.org/10.1126/science.1241214 Google Scholar
  51. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes 64(8):2847–2858.  https://doi.org/10.2337/db14-1916 Google Scholar
  52. Sara-Assar MMFTMA (2017) Evidence-based psychotherapeutic interventions and mhealth for weight management in overweight: a biopsychosocial framework. Dissertation, Alliant International UniversityGoogle Scholar
  53. Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH (2016) Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 5(9):759–770.  https://doi.org/10.1016/j.molmet.2016.06.002 Google Scholar
  54. Schweiger M, Romauch M, Schreiber R, Grabner GF, Hütter S, Kotzbeck P, Benedikt P, Eichmann TO, Yamada S, Knittelfelder O, Diwoky C, Doler C, Mayer N, De Cecco W, Breinbauer R, Zimmermann R, Zechner R (2017) Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat Commun Nat Commun 8:14859–14873.  https://doi.org/10.1038/ncomms14859 Google Scholar
  55. Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332.  https://doi.org/10.1038/nm1663 Google Scholar
  56. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735.  https://doi.org/10.1136/gutjnl-2012-303839 Google Scholar
  57. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, de Wouters T, Juste C, Rizkalla S, Chilloux J, Hoyles L, Nicholson JK, Consortium MI-O, Dore J, Dumas ME, Clement K, Backhed F, Nielsen J (2015) Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 22(2):320–331.  https://doi.org/10.1016/j.cmet.2015.07.001 Google Scholar
  58. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-pd-l1 efficacy. Science 350(6264):1084–1089.  https://doi.org/10.1126/science.aac4255 Google Scholar
  59. Stark CM, Susi A, Emerick J, Nylund CM (2019) Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut 68(1):62–69.  https://doi.org/10.1136/gutjnl-2017-314971 Google Scholar
  60. Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, Veyrat-Durebex C, Tarallo V, Rigo D, Germain S, Ilievska M, Montet X, Seimbille Y, Hapfelmeier S, Trajkovski M (2015) Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 21(12):1497–1501.  https://doi.org/10.1038/nm.3994 Google Scholar
  61. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9(5):397–403.  https://doi.org/10.1007/s13238-018-0546-3 Google Scholar
  62. Tannock GW (2005) New perceptions of the gut microbiota: implications for future research. Gastroenterol Clin N Am 34(3):361–382, vii.  https://doi.org/10.1016/j.gtc.2005.05.006 Google Scholar
  63. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094.  https://doi.org/10.1016/s0140-6736(13)62219-9 Google Scholar
  64. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031.  https://doi.org/10.1038/nature05414 Google Scholar
  65. Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22(3):516–530.  https://doi.org/10.1016/j.cmet.2015.07.007 Google Scholar
  66. Velikonja A, Lipoglavsek L, Zorec M, Orel R, Avgustin G (2018) Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe 55:67–77.  https://doi.org/10.1016/j.anaerobe.2018.11.002 Google Scholar
  67. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JET, Strissel K, Zhao L, Obin M, Shen J (2014) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. The ISME J 9(1):1–15.  https://doi.org/10.1038/ismej.2014.99 Google Scholar
  68. Winer DA, Luck H, Tsai S, Winer S (2016) The intestinal immune system in obesity and insulin resistance. Cell Metab 23(3):413–426.  https://doi.org/10.1016/j.cmet.2016.01.003 Google Scholar
  69. Woting A, Pfeiffer N, Hanske L, Loh G, Klaus S, Blaut M (2015) Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res 59(11):2267–2278.  https://doi.org/10.1002/mnfr.201500249 Google Scholar
  70. Yadav R, Kumar V, Baweja M, Shukla P (2018a) Gene editing and genetic engineering approaches for advanced probiotics a review. Crit Rev Food Sci 58(10):1735–1746.  https://doi.org/10.1080/10408398.2016.1274877 Google Scholar
  71. Yadav R, Shukla P (2017) An overview of advanced technologies for selection of probiotics and their expediency: a review. Crit Rev Food Sci 57(15):3233–3242.  https://doi.org/10.1080/10408398.2015.1108957 Google Scholar
  72. Yadav R, Singh PK, Puniya AK, Shukla P (2016) Catalytic interactions and molecular docking of bile salt hydrolase (bsh) from L. plantarum RYPR1 and its prebiotic utilization. Front Microbiol 7:2116–2123.  https://doi.org/10.3389/fmicb.2016.02116 Google Scholar
  73. Yadav R, Singh PK, Shukla P (2018b) Metabolic engineering for probiotics and their genome-wide expression profiling. Curr Protein Pept Sci 19(1):68–74.  https://doi.org/10.2174/1389203718666161111130157 Google Scholar
  74. Zarrinpar A, Chaix A, Xu ZJZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9(1):2872–2885.  https://doi.org/10.1038/S41467-018-05336-9 Google Scholar
  75. Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, Zhang X, Zhao L (2015) Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 5(1):14405–14415.  https://doi.org/10.1038/srep14405 Google Scholar
  76. Zhang X, Chen Y, Zhu J, Zhang M, Ho CT, Huang Q, Cao J (2018a) Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (−)-epigallocatechin 3-O-(3-O-methyl) gallate (egcg3”me). Mol Nutr Food Res 62(13):e1800274-e1800309 doi: https://doi.org/10.1002/mnfr.201800274
  77. Zhang X, Zhang M, Ho CT, Guo X, Wu Z, Weng P, Yan M, Cao J (2018b) Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J Funct Foods 46:268–277.  https://doi.org/10.1016/j.jff.2018.05.003 Google Scholar
  78. Zhang X, Zhu J, Zhang X, Cheng M, Zhang Z, Cao J (2018c) The modulatory effect of nanocomplexes loaded with EGCG3″me on intestinal microbiota of high fat diet-induced obesity mice model. J Food Biochem 42(3):e12501–e12509.  https://doi.org/10.1111/jfbc.12501

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dongmin Liu
    • 1
    • 2
  • Beibei Wen
    • 1
  • Kun Zhu
    • 1
  • Yong Luo
    • 1
  • Juan Li
    • 1
    • 3
    • 4
  • Yinhua Li
    • 1
    • 3
    • 4
  • Haiyan Lin
    • 1
    • 3
    • 4
  • Jianan Huang
    • 1
    • 3
    • 4
    Email author
  • Zhonghua Liu
    • 1
    • 3
    • 4
    Email author
  1. 1.Key Laboratory of Ministry of Education for Tea ScienceHunan Agricultural UniversityChangshaChina
  2. 2.Hunan University of Science and EngineeringYongzhouChina
  3. 3.National Research Center of Engineering Technology for Utilization of Botanical Functional IngredientsChangshaChina
  4. 4.Collaborative Innovation Center of Utilization of Functional Ingredients from BotanicalsChangshaChina

Personalised recommendations