Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3501–3510 | Cite as

Translation enhancement by a Dictyostelium gene sequence in Escherichia coli

  • Tomo KondoEmail author
  • Shigehiko Yumura
Applied genetics and molecular biotechnology
  • 160 Downloads

Abstract

Methods for heterologous protein production in Escherichia coli have revolutionized biotechnology and the bioindustry. It is ultimately important to increase the amount of protein product from bacteria. To this end, a variety of tools, such as effective promoters, have been developed. Here, we present a versatile molecular tool based on a phenomenon termed “translation enhancement by a Dictyostelium gene sequence” (“TED”) in E. coli. We found that protein expression was increased when a gene sequence of Dictyostelium discoideum was placed upstream of the Shine–Dalgarno sequence located between the promoter and the initiation codon of a target gene. The most effective sequence among the genes examined was mlcR, which encodes the myosin regulatory light chain, a subunit of myosin II. Serial deletion analysis revealed that at least 10 bases of the 3′ end of the mlcR gene enhanced the production of green fluorescent protein in cells. We applied this tool to a T7 expression system and found that the expression level of the proteins tested was increased when compared with the conventional method. Thus, current protein production systems can be improved by combination with TED.

Keywords

Protein production E. coli Dictyostelium Translation 

Notes

Acknowledgments

TK was supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

Funding

This research was supported by the Japan Society for the Promotion of Science KAKENHI Grant Number 16J08310 to TK.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_9746_MOESM1_ESM.pdf (544 kb)
ESM 1 (PDF 543 kb)

References

  1. Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, Davidson MW, Lin MZ, Chu J (2016) Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci Rep 6:20889.  https://doi.org/10.1038/srep20889 CrossRefGoogle Scholar
  2. Belasco JG, Nilsson G, von Gabain A, Cohen SN (1986) The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell 46:245–251.  https://doi.org/10.1016/0092-8674(86)90741-5
  3. Bellis DD, Schwartz I (1990) Regulated expression of foreign genes fused to lac: control by glucose levels in growth medium. Nucleic Acids Res 18:1311–1311.  https://doi.org/10.1093/nar/18.5.1311 CrossRefGoogle Scholar
  4. de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25.  https://doi.org/10.1073/pnas.80.1.21 CrossRefGoogle Scholar
  5. Boni IV, Isaeva DM, Musychenko ML, Tzareva NV (1991) Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 19:155–162.  https://doi.org/10.1093/nar/19.1.155
  6. Bouvet P, Belasco JG (1992) Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360:488–491.  https://doi.org/10.1038/360488a0 CrossRefGoogle Scholar
  7. Buser DP, Schleicher KD, Prescianotto-Baschong C, Spiess M (2018) A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface. Proc Natl Acad Sci U S A 12:201801865–2018E6236.  https://doi.org/10.1073/pnas.1801865115 Google Scholar
  8. Chen H, Bjerknes M, Kumar R, Jay E (1994a) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22:4953–4957.  https://doi.org/10.1093/nar/22.23.4953
  9. Chen P, Ostrow BD, Tafuri SR, Chisholm RL (1994b) Targeted disruption of the Dictyostelium RMLC gene produces cells defective in cytokinesis and development. J Cell Biol 127:1933–1944.  https://doi.org/10.1083/jcb.127.6.1933
  10. Coleman J, Inouye M, Nakamura K (1985) Mutations upstream of the ribosome-binding site affect translational efficiency. J Mol Biol 181:139–143.  https://doi.org/10.1016/0022-2836(85)90332-8 CrossRefGoogle Scholar
  11. Colussi TM, Costantino DA, Zhu J, Donohue JP, Korostelev AA, Jaafar ZA, Plank T-DM, Noller HF, Kieft JS (2015) Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 519:110–113.  https://doi.org/10.1038/nature14219 CrossRefGoogle Scholar
  12. Derynck R, Remaut E, Saman E, Stanssens P, De Clercq E, Content J, Fiers W (1980) Expression of human fibroblast interferon gene in Escherichia coli. Nature 287:193–197.  https://doi.org/10.1038/287193a0
  13. Devos R, Plaetinck G, Cheroutre H, Simons G, Degrave W, Tavernier J, Remaut E, Fiers W (1983) Molecular cloning of human interleukin 2 cDNA and its expression in E. coli. Nucleic Acids Res 11:4307–4323.  https://doi.org/10.1093/nar/11.13.4307 CrossRefGoogle Scholar
  14. Dickson RC, Abelson J, Barnes WM, Reznikoff WS (1975) Genetic regulation: the lac control region. Science 187:27–35.  https://doi.org/10.1126/science.1088926
  15. Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57.  https://doi.org/10.1038/nature03481 CrossRefGoogle Scholar
  16. Espah Borujeni A, Channarasappa AS, Salis HM (2014) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659.  https://doi.org/10.1093/nar/gkt1139 CrossRefGoogle Scholar
  17. Etchegaray JP, Inouye M (1999) Translational enhancement by an element downstream of the initiation codon in Escherichia coli. J Biol Chem 274:10079–10085.  https://doi.org/10.1074/jbc.274.15.10079 CrossRefGoogle Scholar
  18. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586.  https://doi.org/10.1073/pnas.1208507109 CrossRefGoogle Scholar
  19. Gatti-Lafranconi P, Dijkman WP, Devenish SR, Hollfelder F (2013) A single mutation in the core domain of the lac repressor reduces leakiness. Microb Cell Factories 12:67.  https://doi.org/10.1186/1475-2859-12-67 CrossRefGoogle Scholar
  20. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76:106–110.  https://doi.org/10.1073/pnas.76.1.106
  21. Gold L, Pribnow D, Schneider T, Shinedling S, Singer BS, Stormo G (1981) Translational initiation in prokaryotes. Annu Rev Microbiol 35:365–403.  https://doi.org/10.1146/annurev.mi.35.100181.002053 CrossRefGoogle Scholar
  22. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36:W70–W74.  https://doi.org/10.1093/nar/gkn188 CrossRefGoogle Scholar
  23. Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19:20–30.  https://doi.org/10.1038/nrm.2017.91 CrossRefGoogle Scholar
  24. Hugenholtz J, Smid EJ (2002) Nutraceutical production with food-grade microorganisms. Curr Opin Biotechnol 13:497–507.  https://doi.org/10.1016/S0958-1669(02)00367-1
  25. Iserentant D, Fiers W (1980) Secondary structure of mRNA and efficiency of translation initiation. Gene 9:1–12.  https://doi.org/10.1016/0378-1119(80)90163-8 CrossRefGoogle Scholar
  26. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198:1056–1063.  https://doi.org/10.1126/science.412251
  27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829 CrossRefGoogle Scholar
  28. Kennell D, Riezman H (1977) Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol 114:1–21.  https://doi.org/10.1016/0022-2836(77)90279-0 CrossRefGoogle Scholar
  29. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283.  https://doi.org/10.1016/j.tibs.2008.04.007 CrossRefGoogle Scholar
  30. Komarova AV, Tchufistova LS, Supina EV, Boni IV (2002) Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA 8:1137–1147.  https://doi.org/10.3791/54064 CrossRefGoogle Scholar
  31. Komarova AV, Tchufistova LS, Dreyfus M, Boni IV (2005) AU-rich sequences within 5′ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187:1344–1349.  https://doi.org/10.1128/JB.187.4.1344-1349.2005 CrossRefGoogle Scholar
  32. Kondo T, Hamao K, Kamijo K, Kimura H, Morita M, Takahashi M, Hosoya H (2011) Enhancement of myosin II/actin turnover at the contractile ring induces slower furrowing in dividing HeLa cells. Biochem J 435:569–576.  https://doi.org/10.1042/BJ20100837 CrossRefGoogle Scholar
  33. Kondo T, Itakura S, Hamao K, Hosoya H (2012) Phosphorylation of myosin II regulatory light chain controls its accumulation, not that of actin, at the contractile ring in HeLa cells. Exp Cell Res 318:915–924.  https://doi.org/10.1016/j.yexcr.2012.02.009 CrossRefGoogle Scholar
  34. Kondo T, Okada M, Kunihiro K, Takahashi M, Yaoita Y, Hosoya H, Hamao K (2015) Characterization of myosin II regulatory light chain isoforms in HeLa cells. Cytoskeleton 72:609–620.  https://doi.org/10.1002/cm.21268 CrossRefGoogle Scholar
  35. Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:101–123.  https://doi.org/10.1128/MMBR.69.1.101-123.2005 CrossRefGoogle Scholar
  36. Liu X, Ito K, Morimoto S, Hikkoshi-Iwane A, Yanagida T, Uyeda TQ (1998) Filament structure as an essential factor for regulation of Dictyostelium myosin by regulatory light chain phosphorylation. Proc Natl Acad Sci U S A 95:14124–14129.  https://doi.org/10.1073/pnas.95.24.14124
  37. Matsunaga T, Suzuki T, Tanaka M, Arakaki A (2007) Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol 25:182–188.  https://doi.org/10.1016/j.tibtech.2007.02.002 CrossRefGoogle Scholar
  38. McCarthy JE, Schairer HU, Sebald W (1985) Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation. EMBO J 4:519–526.  https://doi.org/10.1002/j.1460-2075.1985.tb03659.x
  39. Olins PO, Devine CS, Rangwala SH, Kavka KS (1988) The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73:227–235.  https://doi.org/10.1016/0378-1119(88)90329-0 CrossRefGoogle Scholar
  40. Osterman IA, Evfratov SA, Sergiev PV, Dontsova OA (2013) Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res 41:474–486.  https://doi.org/10.1093/nar/gks989 CrossRefGoogle Scholar
  41. Qing G, Xia B, Inouye M (2003) Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli. J Mol Microbiol Biotechnol 6:133–144.  https://doi.org/10.1159/000077244 CrossRefGoogle Scholar
  42. Qing G, Ma LC, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882.  https://doi.org/10.1038/nbt984 CrossRefGoogle Scholar
  43. Radhakrishnan A, Green R (2016) Connections underlying translation and mRNA stability. J Mol Biol 428:3558–3564.  https://doi.org/10.1016/j.jmb.2016.05.025 CrossRefGoogle Scholar
  44. Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L (1992) Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6:1219–1229.  https://doi.org/10.1111/j.1365-2958.1992.tb01561.x
  45. Roberts TM, Kacich R, Ptashne M (1979) A general method for maximizing the expression of a cloned gene. Proc Natl Acad Sci U S A 76:760–764.  https://doi.org/10.1073/pnas.76.2.760 CrossRefGoogle Scholar
  46. Robinson DN, Spudich JA (2000) Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J Cell Biol 150:823–838.  https://doi.org/10.1083/jcb.150.4.823
  47. Rosenberg AH, Lade BN, Dao-shan C, Lin S-W, Dunn JJ, Studier FW (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56:125–135.  https://doi.org/10.1016/0378-1119(87)90165-X CrossRefGoogle Scholar
  48. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950.  https://doi.org/10.1038/nbt.1568 CrossRefGoogle Scholar
  49. Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6(3):291–294.  https://doi.org/10.1038/nbt0388-291
  50. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  51. Shepard HM, Yelverton E, Goeddel DV (1982) Increased synthesis in E. coli of fibroblast and leukocyte interferons through alterations in ribosome binding sites. DNA 1:125–131.  https://doi.org/10.1089/dna.1.1982.1.125 CrossRefGoogle Scholar
  52. Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71:1342–1346.  https://doi.org/10.1073/pnas.71.4.1342
  53. Singer BS, Gold L, Shinedling ST, Colkitt M, Hunter LR, Pribnow D, Nelson MA (1981) Analysis in vivo of translational mutants of the rIIB cistron of bacteriophage T4. J Mol Biol 149:405–432.  https://doi.org/10.1016/0022-2836(81)90479-4 CrossRefGoogle Scholar
  54. de Smit MH, van Duin J (1990a) Control of prokaryotic translational initiation by mRNA secondary structure. In: Progress in nucleic acid research and molecular biology. Elsevier, pp 1–35.  https://doi.org/10.1016/S0079-6603(08)60707-2
  55. de Smit MH, van Duin J (1990b) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 87:7668–7672.  https://doi.org/10.1073/pnas.87.19.7668
  56. de Smit MH, van Duin J (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331:737–743.  https://doi.org/10.1016/S0022-2836(03)00809-X
  57. Song Y, Nikoloff JM, Zhang D (2015) Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol 25:963–977.  https://doi.org/10.4014/jmb.1501.01028 CrossRefGoogle Scholar
  58. Song AA-L, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Factories 16:55.  https://doi.org/10.1186/s12934-017-0669-x CrossRefGoogle Scholar
  59. Spadiut O, Spadiut O, Capone S, Capone S, Krainer F, Krainer F, Glieder A, Glieder A, Herwig C (2014) Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 32:54–60.  https://doi.org/10.1016/j.tibtech.2013.10.002 CrossRefGoogle Scholar
  60. Stanssens P, Remaut E, Fiers W (1985) Alterations upstream from the Shine-Dalgarno region and their effect on bacterial gene expression. Gene 36:211–223.  https://doi.org/10.1016/0378-1119(85)90176-3
  61. Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Structural Genomics Consortium, Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe Paganon S, Park H-W, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim S-H, Rao Z, Shi Y, Terwilliger TC, Kim C-Y, Hung L-W, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5:135–146.  https://doi.org/10.1038/nmeth.f.202 CrossRefGoogle Scholar
  62. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89.  https://doi.org/10.1016/0076-6879(90)85008-C
  63. Takahashi S, Furusawa H, Ueda T, Okahata Y (2013) Translation enhancer improves the ribosome liberation from translation initiation. J Am Chem Soc 135:13096–13106.  https://doi.org/10.1021/ja405967h CrossRefGoogle Scholar
  64. Taniguchi T, Guarente L, Roberts TM, Kimelman D, Douhan J, Ptashne M (1980) Expression of the human fibroblast interferon gene in Escherichia coli. Proc Natl Acad Sci U S A 77:5230–5233.  https://doi.org/10.1073/pnas.77.9.5230 CrossRefGoogle Scholar
  65. Uebe R, Schüler D (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 14:621–637.  https://doi.org/10.1038/nrmicro.2016.99 CrossRefGoogle Scholar
  66. Uyeda TQ, Spudich JA (1993) A functional recombinant myosin II lacking a regulatory light chain-binding site. Science 262:1867–1870.  https://doi.org/10.1126/science.8266074
  67. Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100.  https://doi.org/10.1186/1471-2199-8-100 CrossRefGoogle Scholar
  68. Ward JE, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941–949.  https://doi.org/10.1016/0092-8674(85)90290-9 CrossRefGoogle Scholar
  69. Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci: CMLS 64:3–16.  https://doi.org/10.1007/s00018-006-6296-z CrossRefGoogle Scholar
  70. Wong SL (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517–522.  https://doi.org/10.1016/0958-1669(95)80085-9
  71. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119.  https://doi.org/10.1016/0378-1119(85)90120-9 CrossRefGoogle Scholar
  72. Yu XM, Reznikoff WS (1984) Deletion analysis of the CAP-cAMP binding site of the Escherichia coli lactose promoter. Nucleic Acids Res 12:5449–5464.  https://doi.org/10.1093/nar/12.13.5449

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan

Personalised recommendations