Advertisement

A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei

  • Lei Wang
  • Xinxing Lv
  • Yanli Cao
  • Fanglin Zheng
  • Xiangfeng Meng
  • Yu Shen
  • Guanjun Chen
  • Weifeng LiuEmail author
  • Weixin ZhangEmail author
Applied microbial and cell physiology
  • 131 Downloads

Abstract

XYR1 is the key transcription activator for cellulase gene expression in the model filamentous fungus Trichoderma reesei, which is widely applied in the industry due to its excellent capability of secreting a large quantity of cellulases. Despite the essential role of XYR1, the regulation of its expression in T. reesei cellulolytic response is poorly understood. In this study, we identified a transcription factor RXE1 exhibiting strong binding activity to the xyr1 promoter using yeast one-hybrid screen. RXE1 homologs exist in quite a few filamentous fungi but none of them have been assessed regarding their functional involvement in plant cell wall degradation. Knockdown of rxe1 in T. reesei using a copper-mediated RNAi system not only abrogated conidiation, but also remarkably compromised xyr1 and cellulase gene expression. The defective cellulase but not conidia production in the rxe1-knockdown strain was fully rescued by the constitutive expression of XYR1. Our study thus identified a novel transcriptional regulator controlling xyr1 and cellulase gene expression, which will contribute to elaborating the intricate network of cellulase gene regulation in T. reesei.

Keywords

Trichoderma reesei Cellulase XYR1 Transcriptional regulator RXE1 

Notes

Funding information

This work is supported by grants from the National Natural Science Foundation of China (31770047 and 31670040), Shandong Technology Innovation Center of Synthetic Biology (sdsynbio-2018PY-01), and State Key Laboratory of Microbial Technology Open Projects Fund (Project NO. M2017-10).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_9739_MOESM1_ESM.pdf (166 kb)
ESM 1 (PDF 165 kb)

References

  1. Antoniêto AC, de Paula RG, Castro Ldos S, Silva-Rocha R, Persinoti GF, Silva RN (2016) Trichoderma reesei CRE1-mediated carbon catabolite repression in response to sophorose through RNA sequencing analysis. Curr Genomics 17(2):119–131.  https://doi.org/10.2174/1389202917666151116212901 Google Scholar
  2. Aro N, Saloheimo A, Ilmen M, Penttilä (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276(26):24309–24314.  https://doi.org/10.1074/jbc.M003624200 Google Scholar
  3. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106.  https://doi.org/10.1186/s12934-016-0507-6 Google Scholar
  4. Cao Y, Zheng F, Wang L, Zhao G, Chen G, Zhang W, Liu W (2017) Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol 105(1):65–83.  https://doi.org/10.1111/mmi.13685 Google Scholar
  5. Chang YC, Timberlake WE (1993) Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133(1):29–38Google Scholar
  6. Chen L, Zou G, Wang J, Wang J, Liu R, Jiang Y, Zhao G, Zhou Z (2016) Characterization of the Ca(2+) -responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol 100(3):560–575.  https://doi.org/10.1111/mmi.13334 Google Scholar
  7. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol 2:121–145.  https://doi.org/10.1146/annurev-chembioeng-061010-114205 Google Scholar
  8. Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63(2):317–327Google Scholar
  9. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, Dos Santos RA, Damásio AR, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AF, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JV, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18(1):28Google Scholar
  10. Dos Santos Castro L, de Paula RG, Antonieto AC, Persinoti GF, Silva-Rocha R, Silva RN (2016) Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis. Front Microbiol 7:175.  https://doi.org/10.3389/fmicb.2016.00175 Google Scholar
  11. Druzhinina IS, Kubicek CP (2016) Familiar stranger: ecological genomics of the model saprotroph and industrial enzyme producer Trichoderma reesei breaks the stereotypes. Adv Appl Microbiol 95:69–147.  https://doi.org/10.1016/bs.aambs.2016.02.001 Google Scholar
  12. Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10(6):1485–1499.  https://doi.org/10.1111/1751-7915.12726 Google Scholar
  13. Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46(8):564–574.  https://doi.org/10.1016/j.fgb.2009.04.001 Google Scholar
  14. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455.  https://doi.org/10.1104/pp.110.156646 Google Scholar
  15. Glass NL, Schmoll M, Cate JH, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498.  https://doi.org/10.1146/annurev-micro-092611-150044 Google Scholar
  16. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645.  https://doi.org/10.1016/j.tibs.2016.04.006 Google Scholar
  17. Hakkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7:14.  https://doi.org/10.1186/1754-6834-7-14 Google Scholar
  18. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235.  https://doi.org/10.1093/molbev/mst012 Google Scholar
  19. Hu PJ, Wang Y, Zhou J, Pan YY, Liu G (2015) AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Fungal Genet Biol 83:26–40.  https://doi.org/10.1016/j.fgb2015.08.003 Google Scholar
  20. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282.  https://doi.org/10.1126/science.1208386 Google Scholar
  21. Karimi Aghcheh R, Nemeth Z, Atanasova L, Fekete E, Paholcsek M, Sandor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP (2014) The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 9(11):e112799.  https://doi.org/10.1371/journal.pone.0112799 Google Scholar
  22. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19.  https://doi.org/10.1186/1754-6834-2-19 Google Scholar
  23. Li Y, Chen G, Liu W (2010) Multiple metabolic signals influence GAL gene activation by modulating the interaction of Gal80p with the transcriptional activator Gal4p. Mol Microbiol 78(2):414–428Google Scholar
  24. Li F, Shi HQ, Ying SH, Feng MG (2015) WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 99(23):10069–10081.  https://doi.org/10.1007/s00253-015-6823-7 Google Scholar
  25. Ling M, Qin Y, Li N, Liang Z (2009) Binding of two transcriptional factors, Xyr1 and ACEI, in the promoter region of cellulase cbh1 gene. Biotechnol Lett 31(2):227–231.  https://doi.org/10.1007/s10529-008-9857-4 Google Scholar
  26. Lv X, Zheng F, Li C, Zhang W, Chen G, Liu W (2015) Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. Biotechnol Biofuels 8:67.  https://doi.org/10.1186/s13068-015-0249-4 Google Scholar
  27. Ma L, Chen L, Zhang L, Zou G, Liu R, Jiang YP, Zhou ZH (2016) RNA sequencing reveals Xyr1 as a transcription factor regulating gene expression beyond carbohydrate metabolism. Biomed Res Int 2016:4841756.  https://doi.org/10.1155/2016/4841756 Google Scholar
  28. Manzo-Valencia MK, Valdes-Santiago L, Sanchez-Segura L, Guzman-de-Pena DL (2016) Naphthalene acetic acid potassium salt (NAA-K(+)) affects conidial germination, sporulation, mycelial growth, cell surface morphology, and viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in vitro. J Agric Food Chem 64(44):8315–8323.  https://doi.org/10.1021/acs.jafc.6b03105 Google Scholar
  29. Mello-de-Sousa TM, Rassinger A, Derntl C, Pocas-Fonseca MJ, Mach RL, Mach-Aigner AR (2016) The relation between promoter chromatin status, Xyr1 and cellulase expression in Trichoderma reesei. Curr Genomics 17(2):145–152.  https://doi.org/10.2174/1389202917666151116211812 Google Scholar
  30. Nakari-Setala T, Penttilä M (1995) Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol 61(10):3650–3655Google Scholar
  31. Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269.  https://doi.org/10.1186/1471-2164-12-269 Google Scholar
  32. Rassinger A, Gacek-Matthews A, Strauss J, Mach RL, Mach-Aigner AR (2018) Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator. Fungal Biol Biotechnol 5:15.  https://doi.org/10.1186/s40694-018-0059-0 Google Scholar
  33. Saloheimo A, Aro N, Ilmen M, Penttilä M (2000) Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275(8):5817–5825.  https://doi.org/10.1074/jbc.275.8.5817 Google Scholar
  34. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108Google Scholar
  35. Schmoll M (2018) Light, stress, sex and carbon—the photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biol 122(6):479–486.  https://doi.org/10.1016/j.funbio.2017.10.007 Google Scholar
  36. Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP (2012) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84(6):1150–1164.  https://doi.org/10.1111/j.1365-2958.2012.08083.x Google Scholar
  37. Silva-Rocha R, Castro Ldos S, Antonieto AC, Guazzaroni ME, Persinoti GF, Silva RN (2014) Deciphering the cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. PLoS One 9(6):e99366.  https://doi.org/10.1371/journal.pone.0099366 Google Scholar
  38. Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376(1–2):103–107Google Scholar
  39. Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137.  https://doi.org/10.1128/EC.00211-06 Google Scholar
  40. Takashima S, Iikura H, Nakamura A, Masaki H, Uozumi T (1996) Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol Lett 145(3):361–366Google Scholar
  41. Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B (2012) A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol 93(4):1601–1608.  https://doi.org/10.1007/s00253-011-3674-8 Google Scholar
  42. Wang L, Zheng F, Zhang W, Zhong Y, Chen G, Meng X, Liu W (2018) A copper-controlled RNA interference system for reversible silencing of target genes in Trichoderma reesei. Biotechnol Biofuels 11:33.  https://doi.org/10.1186/s13068-018-1038-7 Google Scholar
  43. Xin Q, Gong Y, Lv X, Chen G, Liu W (2013) Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol 67(5):580–589.  https://doi.org/10.1007/s00284-013-0396-4 Google Scholar
  44. Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Gen Genomics 266(1):56–63Google Scholar
  45. Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, Wang H, Wang Z, Bao X, Chen G, Liu W (2013) Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem 288(46):32861–32872.  https://doi.org/10.1074/jbc.M113.505826 Google Scholar
  46. Zheng F, Cao Y, Wang L, Lv X, Meng X, Zhang W, Chen G, Liu W (2017) The mating type locus protein MAT1-2-1 of Trichoderma reesei interacts with Xyr1 and regulates cellulase gene expression in response to light. Sci Rep 7(1):17346.  https://doi.org/10.1038/s41598-017-17439-2 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Wang
    • 1
  • Xinxing Lv
    • 1
  • Yanli Cao
    • 1
  • Fanglin Zheng
    • 1
  • Xiangfeng Meng
    • 1
  • Yu Shen
    • 1
  • Guanjun Chen
    • 1
  • Weifeng Liu
    • 1
    Email author
  • Weixin Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoPeople’s Republic of China

Personalised recommendations