Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3487–3499 | Cite as

A novel salt-inducible CrGPDH3 promoter of the microalga Chlamydomonas reinhardtii for transgene overexpression

  • Anayeli Guadalupe Beltran-Aguilar
  • Santy Peraza-Echeverria
  • Luisa Alhucema López-Ochoa
  • Ileana Cecilia Borges-Argáez
  • Virginia Aurora Herrera-ValenciaEmail author
Applied genetics and molecular biotechnology

Abstract

The expression of transgenes in the nucleus is an attractive alternative for the expression of recombinant proteins in the green microalga Chlamydomonas reinhardtii. For this purpose, a strong inducible promoter that allows protein accumulation without possible negative effects on cell multiplication and biomass accumulation is desirable. A previous study at our laboratory identified that the CrGPDH3 gene from C. reinhardtii was inducible under NaCl treatments. In this study, we cloned and characterized a 3012 bp sequence upstream of the start codon of the CrGPDH3 gene, including the 285 bp 5′ untranslated region. This region was identified as the full-length promoter and named PromA (− 2727 to + 285). Deletion analysis of PromA using GUSPlus as a reporter gene enabled us to identify PromC (− 653 to + 285) as the core promoter, displaying basal expression. A region named RIA1 (− 2727 to − 1672) was suggested to contain the NaCl response elements. Moreover, deletion analysis of RIA1 enabled us to identify a region of 577 bp named RIA3 (− 2727 to − 2150) that, when cloned upstream of PromC, was able to drive the expression of GUSPlus in response to 5 and 100 mM NaCl, and 100 mM KCl, similar to the native CrGPDH3 promoter. These results expand our understanding of the transcriptional mechanism of CrGPDH3 and clearly show that CrGPDH3 promoter and its chimeric forms are highly salt-inducible and can be used as inducible promoters for the overexpression of transgenes in C. reinhardtii.

Keywords

Chlamydomonas reinhardtii Inducible promoter Chimeric promoter Recombinant protein 

Notes

Acknowledgements

The authors would like to thank the editor and reviewers of this manuscript for their critical review and their valuable comments. The authors thank Edanz (www.edanzediting.com) for editing the English text of a draft of this manuscript.

Author contributions

VAH-V and SP-E conceived the study. VAH-V, SP-E, and LAL-O designed the experiments. AGB-A and ICB-A performed the experiments. AGB-A, VAH-V, SP-E, and LAL-O analyzed the results. AGB-A and VAH-V wrote the manuscript.

Funding

This research was funded by Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico) (Grant number 169217). Anayeli Guadalupe Beltran-Aguilar received funding from CONACYT (Scholarship number 426890).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9733_MOESM1_ESM.pdf (735 kb)
ESM 1 (PDF 734 kb)

References

  1. Baek K, Lee Y, Nam O, Park S, Sim SJ, Jin E (2016) Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii. Biotechnol J 11(3):384–392.  https://doi.org/10.1002/biot.201500269 CrossRefGoogle Scholar
  2. Butler JEF, Kadonaga JT (2002) The RNA polymerase II corepromoter: a key component in the regulation of gene expression. Genes Dev 16(20):2583–2592.  https://doi.org/10.1101/gad.1026202 CrossRefGoogle Scholar
  3. Barahimipour R, Neupert J, Bock R (2016) Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol 90(4):403–418.  https://doi.org/10.1007/s11103-015-0425-8 CrossRefGoogle Scholar
  4. Bhullar S, Chakravarthy S, Pental D, Burma PK (2009) Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter. J Biosci 34:953–962.  https://doi.org/10.1007/s12038-009-0109-0 CrossRefGoogle Scholar
  5. Bilas R, Katarzyna Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult 127(2):269–287.  https://doi.org/10.1007/s11240-016-1057-7 CrossRefGoogle Scholar
  6. Casais-Molina ML, Peraza-Echeverria S, Echevarría-Machado I, Herrrera-Valencia VA (2016) Expression of Chlamydomonas reinhardtii CrGPDH2 and CrGPDH3 cDNAs in yeast reveals that they encode functional glycerol-3-phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance. J Appl Phycol 28(1):219–226.  https://doi.org/10.1007/s10811-015-0588-3 CrossRefGoogle Scholar
  7. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang S-sC, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675.  https://doi.org/10.7554/eLife.00675 CrossRefGoogle Scholar
  8. Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31(2):140–153.  https://doi.org/10.1016/j.biotechadv.2012.09.001 CrossRefGoogle Scholar
  9. Daniell H, Ruiz ON, Dhingra A (2005) Chloroplast genetic engineering to improve agronomic traits. In: Peña L (ed) Transgenic plants: methods and protocols. Methods in molecular biology™, vol 286. Humana Press, New York, pp 111–137.  https://doi.org/10.1385/1-59259-827-7:111 CrossRefGoogle Scholar
  10. Dyo YM, Purton S (2018) The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology 164:113–121.  https://doi.org/10.1099/mic.0.000599 CrossRefGoogle Scholar
  11. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883.  https://doi.org/10.1007/s00425-008-0879-x CrossRefGoogle Scholar
  12. Ferrante P, Catalanotti C, Bonente G, Giuliano G (2008) An optimized, chemically regulated gene expression system for Chlamydomonas. PLoS One 3(9):e3200.  https://doi.org/10.1371/journal.pone.0003200 CrossRefGoogle Scholar
  13. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186.  https://doi.org/10.1093/nar/gkr944 CrossRefGoogle Scholar
  14. Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol 10:18.  https://doi.org/10.1186/1471-2229-10-18 CrossRefGoogle Scholar
  15. Harris EH (1989) The Chlamydomonas sourcebook, a comprehensive guide to biology and laboratory use. Academic Press, San DiegoGoogle Scholar
  16. Heitzer M, Zschoernig B (2007) Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. Biotechniques 43(3):324–332.  https://doi.org/10.2144/000112556 CrossRefGoogle Scholar
  17. Hernández-García CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217-218:109–119.  https://doi.org/10.1016/j.plantsci.2013.12.007 CrossRefGoogle Scholar
  18. Herrera-Valencia VA, Macario-González LA, Casais-Molina ML, Beltran-Aguilar AG, Peraza-Echeverria S (2012) In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii. Curr Microbiol 64(5):477–485.  https://doi.org/10.1007/s00284-012-0095-6 CrossRefGoogle Scholar
  19. Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K (2016) Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+-pyrophosphatase gene by deletion analysis in transgenic tobacco plants. PLoS One 11(4):e0154041.  https://doi.org/10.1371/journal.pone.0154041 CrossRefGoogle Scholar
  20. Hudson M, Ringli C, Boylan MT, Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13(15):2017–2027CrossRefGoogle Scholar
  21. Husic DH, Tolbert NE (1986) Effect of osmotic stress on carbon metabolism in Chlamydomonas reinhardtii accumulation of glycerol as an osmoregulatory solute. Plant Physiol 82(2):594–596.  https://doi.org/10.1104/pp.82.2.594 CrossRefGoogle Scholar
  22. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907CrossRefGoogle Scholar
  23. Kim EJ, Ma X, Cerutti H (2015) Gene silencing in microalgae: mechanisms and biological roles. Bioresour Technol 184:23–32 doi: 0.1016/j.biortech.2014.10.119CrossRefGoogle Scholar
  24. Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 133(2):783–793.  https://doi.org/10.1104/pp.103.026492 CrossRefGoogle Scholar
  25. Kuhlemeier C, Fluhr R, Green PJ, Chua N-H (1987) Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes Dev 1:247–255CrossRefGoogle Scholar
  26. Kumar A, Falcao VR, Sayre RT (2013) Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Res 2(4):321–332.  https://doi.org/10.1016/j.algal.2013.09.002 CrossRefGoogle Scholar
  27. León R, Galván FJ (1994) Halotolerance studies on Chlamydomonas reinhardtii: glycerol excretion by free and immobilized cells. Appl Phycol 6(1):13–20.  https://doi.org/10.1007/BF02185898
  28. Li J, Yumin L, Xue L, Xie H (2010) A structurally novel salt-regulated promoter of duplicated carbonic anhydrase gene 1 from Dunaliella salina. Mol Biol Rep 37:1143–1154.  https://doi.org/10.1007/s11033-009-9901-z CrossRefGoogle Scholar
  29. Liang M-H, Lu Y, Chen H-H, Jian J-G (2017) The salt-regulated element in the promoter of lycopene β-cyclase gene confers a salt regulatory pattern in carotenogenesis of Dunaliella bardawil. Environ Microbiol 19(3):982–989.  https://doi.org/10.1111/1462-2920.13539 CrossRefGoogle Scholar
  30. Loppes R, Radoux M (2001) Identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in Chlamydomonas reinhardtii. Plant Mol Biol 45(2):215–227CrossRefGoogle Scholar
  31. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447.  https://doi.org/10.1046/j.1365-313X.1998.00145.x CrossRefGoogle Scholar
  32. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Chlamydomonas annotation team, JGI annotation team, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250.  https://doi.org/10.1126/science.1143609 CrossRefGoogle Scholar
  33. Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS One 13(2):e0192433.  https://doi.org/10.1371/journal.pone.0192433 CrossRefGoogle Scholar
  34. Park S, Lee Y, Lee JH, Jin E (2013) Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238(6):1147–1156.  https://doi.org/10.1007/s00425-013-1955-4 CrossRefGoogle Scholar
  35. Qin F, Sakuma Y, Li J, Liu Q, Li Y-Q, Shinozaki K, Kazuko Y-S (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45(8):1042–1052.  https://doi.org/10.1093/pcp/pch118 CrossRefGoogle Scholar
  36. Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31(3):479–494.  https://doi.org/10.1007/s00299-011-1186-8 CrossRefGoogle Scholar
  37. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. Sawyer AL, Hankamer BD, Ross IL (2015) Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. Planta 241(5):1287–1302.  https://doi.org/10.1007/s00425-015-2249-9 CrossRefGoogle Scholar
  39. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531.  https://doi.org/10.1111/tpj.12780 CrossRefGoogle Scholar
  40. Simpson J, Schell J, Van Montagu M, Herrera-Estrella L (1986) Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323:551–554CrossRefGoogle Scholar
  41. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383.  https://doi.org/10.1007/s10529-010-0326-5 CrossRefGoogle Scholar
  42. Surzycki R, Greenham, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalga. Biologicals 37:133–138.  https://doi.org/10.1016/j.biologicals.2009.02.005 CrossRefGoogle Scholar
  43. Traewachiwiphak S, Yokthongwattana C, Ves-Urai P, Charoensawan V, Yokthongwattana K (2018) Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. Plant Sci 272:107–116.  https://doi.org/10.1016/j.plantsci.2018.04.010 CrossRefGoogle Scholar
  44. Vaahtera L, Brosché M (2011) More than the sum of its parts – how to achieve a specific transcriptional response to abiotic stress. Plant Sci 180:421–430.  https://doi.org/10.1016/j.plantsci.2010.11.009 CrossRefGoogle Scholar
  45. von Gromoff ED, Schroda M, Oster U, Beck CF (2006) Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter. Nucleic Acids Res 34(17):4767–4779.  https://doi.org/10.1093/nar/gkl602 CrossRefGoogle Scholar
  46. Wang C, Peng X, Wang J, Lei A, Li H, Hu Z (2016) A β-carotene ketolase gene (bkt1) promoter regulated by sodium acetate and light in a model green microalga Chlamydomonas reinhardtii. Algal Res 20:61–69.  https://doi.org/10.1016/j.algal.2016.09.020 CrossRefGoogle Scholar
  47. Weber B, Zicola J, Oka R, Stam M (2016) Plant enhancers: a call for discovery. Trends Plant Sci 21(11):974–986.  https://doi.org/10.1016/j.tplants.2016.07.013 CrossRefGoogle Scholar
  48. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout A, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–1443.  https://doi.org/10.1016/j.cell.2014.08.009 CrossRefGoogle Scholar
  49. Yan N, Fan C, Chen Y, Hu Z (2016) The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci 17(6):962.  https://doi.org/10.3390/ijms17060962 CrossRefGoogle Scholar
  50. Zhang H, Jing R, Mao X (2017) Functional characterization of TaSnRK2.8 promoter in response to abiotic stresses by deletion analysis in transgenic Arabidopsis. Front Plant Sci 8:1198.  https://doi.org/10.3389/fpls.2017.01198 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anayeli Guadalupe Beltran-Aguilar
    • 1
  • Santy Peraza-Echeverria
    • 1
  • Luisa Alhucema López-Ochoa
    • 2
  • Ileana Cecilia Borges-Argáez
    • 1
  • Virginia Aurora Herrera-Valencia
    • 1
    Email author
  1. 1.Centro de Investigación Científica de YucatánUnidad de BiotecnologíaMeridaMexico
  2. 2.Centro de Investigación Científica de YucatánUnidad de Bioquímica y Biología Molecular de PlantasMeridaMexico

Personalised recommendations