Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3465–3476 | Cite as

Improvement of pyoluteorin production in Pseudomonas protegens H78 through engineering its biosynthetic and regulatory pathways

  • Huimin Shi
  • Xianqing HuangEmail author
  • Zheng Wang
  • Yejun Guan
  • Xuehong Zhang
Applied genetics and molecular biotechnology


Pyoluteorin (Plt) is a PKS-NRPS hybrid antibiotic that is produced by Pseudomonas spp. and shows strong antifungal and antibacterial activities. Pseudomonas protegens H78, which was isolated from the rape rhizosphere in Shanghai, can produce a large array of secondary metabolites, including antibiotics and siderophores. Plt is produced at low levels in the H78 wild-type strain. This study aimed to improve Plt production through combinatory genetic engineered strategies. Plt production was significantly enhanced (by14.3-fold) in the strain engineered by the following steps: (1) deletion of the translational repressor gene rsmE in the Gac/Rsm-RsmE pathway; (2) deletion of the ATP-dependent protease gene lon that encodes a potential enzyme that degrades positive regulators; (3) deletion of the negative regulatory gene pltZ of the Plt ABC-type transporter operon pltIJKNOP; (4) deletion of an inhibitory sequence within the operator of the transcriptional activator gene pltR; and (5) overexpression of the pltIJKNOP transport operon. The Plt production of the final engineered strain was increased to 214 from 15 μg ml−1 in the H78 wild-type strain. In addition, the pltA gene in the pltLABCDEFG biosynthetic operon was characterized as the gene encoding the rate-limiting enzyme in the Plt biosynthetic pathway of H78. However, overexpression of the rate-limiting enzyme gene pltA or the transcriptional activator gene pltR did not further improve Plt biosynthesis in the above multiple-gene knockout strains.


Plant growth-promoting rhizobacteria Pseudomonas Antibiotic biosynthesis Genetic engineering Metabolic engineering 


Funding information

This study was supported by the National Natural Science Foundation of China (31470196 and 31270083 to Xianqing Huang).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants by any of the authors.

Supplementary material

253_2019_9732_MOESM1_ESM.pdf (761 kb)
ESM 1 (PDF 761 kb)


  1. Bender C, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196. CrossRefGoogle Scholar
  2. Chen Y, Wang X, Huang X, Zhang X, Xu Y (2008) Las-like quorum-sensing system negatively regulates both pyoluteorin and phenazine-1-carboxylic acid production in Pseudomonas sp. M18. Sci China C Life Sci 51(2):174–181. CrossRefPubMedGoogle Scholar
  3. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. CrossRefPubMedGoogle Scholar
  4. Huang X, Zhu D, Ge Y, Hu H, Zhang X, Xu Y (2004) Identification and characterization of pltZ, a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett 232(2):197–202. CrossRefPubMedGoogle Scholar
  5. Huang X, Yan A, Zhang X, Xu Y (2006) Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 376(1):68–78. CrossRefPubMedGoogle Scholar
  6. Huang X, Zhang X, Xu Y (2008) PltR expression modulated by the global regulators GacA, RsmA, LasI and RhlI in Pseudomonas sp. M18. Res Microbiol 159(2):128–136. CrossRefPubMedGoogle Scholar
  7. Huang X, Wang Z, Liu Y, Zhang X (2017) Complete genome sequence of Pseudomonas protegens H78, a plant growth-promoting rhizobacterium. Genome Announc 5(16):e00233–e00217. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jousset A, Schuldes J, Keel C, Maurhofer M, Daniel R, Scheu S, Thuermer A (2014) Full-genome sequence of the plant growth-promoting bacterium Pseudomonas protegens CHA0. Genome Announc 2(2):e00322–14
  9. Li S, Huang X, Wang G, Xu Y (2012) Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp lys box in Pseudomonas aeruginosa M18. PLoS One 7(6):e39538. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Liu K, Hu H, Wang W, Zhang X (2016) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-hydroxyphenazine. Microb Cell Factories 15(1):131. CrossRefGoogle Scholar
  11. Liu Y, Shi H, Wang Z, Huang X, Zhang X (2018) Pleiotropic control of antibiotic biosynthesis, flagellar operon expression, biofilm formation, and carbon source utilization by RpoN in Pseudomonas protegens H78. Appl Microbiol Biotechnol 102:9719–9730. CrossRefPubMedGoogle Scholar
  12. Lu J, Huang X, Li K, Li S, Zhang M, Wang Y, Jiang H, Xu Y (2009) LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol 143(1):1–9. CrossRefPubMedGoogle Scholar
  13. Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181(7):2166–2174PubMedPubMedCentralGoogle Scholar
  14. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23(7):873–878. CrossRefPubMedGoogle Scholar
  15. Pechy-Tarr M, Bottiglieri M, Mathys S, Lejbolle KB, Schnider-Keel U, Maurhofer M, Keel C (2005) RpoN (σ 54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Molecular plant-microbe interactions. MPMI 18(3):260–272. CrossRefPubMedGoogle Scholar
  16. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34(5):658–684. CrossRefGoogle Scholar
  17. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  18. Sarniguet A, Kraus J, Henkels MD, Muehlchen AM, Loper JE (1995) The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92(26):12255–12259CrossRefGoogle Scholar
  19. Sonnleitner E, Haas D (2011) Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91(1):63–79. CrossRefPubMedGoogle Scholar
  20. Takeuchi K, Tsuchiya W, Noda N, Suzuki R, Yamazaki T, Haas D (2014) Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Environ Microbiol 16(8):2538–2549. CrossRefPubMedGoogle Scholar
  21. Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y (2010) Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol 12(6):1775–1786. CrossRefPubMedGoogle Scholar
  22. Wang G, Huang X, Li S, Huang J, Wei X, Li Y, Xu Y (2012) The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 194(10):2443–2457. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wang Z, Huang X, Liu Y, Yang G, Liu Y, Zhang X (2017) GacS/GacA activates pyoluteorin biosynthesis through Gac/Rsm-RsmE cascade and RsmA/RsmE-driven feedback loop in Pseudomonas protegens H78. Mol Microbiol 105(6):968–985. CrossRefPubMedGoogle Scholar
  24. Whistler CA, Stockwell VO, Loper JE (2000) Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 66(7):2718–2725CrossRefGoogle Scholar
  25. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC (2009) Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res 19(1):12–23. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12:438. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yan A, Huang X, Liu H, Dong D, Zhang D, Zhang X, Xu Y (2007) An rhl-like quorum-sensing system negatively regulates pyoluteorin production in Pseudomonas sp. M18. Microbiology 153(Pt 1):16–28. CrossRefPubMedGoogle Scholar
  28. Yan Q, Philmus B, Chang JH, Loper JE (2017) Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 6:e22835.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations