Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 9, pp 3637–3649 | Cite as

Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria

  • Anissa Dieudonné
  • David Pignol
  • Sandra PrévéralEmail author
Mini-Review
  • 227 Downloads

Abstract

The scientific community’s interest in magnetotactic bacteria has increased substantially in recent decades. These prokaryotes have the particularity of synthesizing nanomagnets, called magnetosomes. The majority of research is based on several scientific questions. Where do magnetotactic bacteria live, what are their characteristics, and why are they magnetic? What are the molecular phenomena of magnetosome biomineralization and what are the physical characteristics of magnetosomes? In addition to scientific curiosity to better understand these stunning organisms, there are biotechnological opportunities to consider. Magnetotactic bacteria, as well as magnetosomes, are used in medical applications, for example cancer treatment, or in environmental ones, for example bioremediation. In this mini-review, we investigated all the aspects mentioned above and summarized the currently available knowledge.

Keywords

Magnetotactic bacteria Magnetosomes Nano-crystals Biomineralization Biotechnology 

Notes

Acknowledgments

The authors would like to thank Damien Faivre for his scientific contribution, Caroline Monteil for her help with the genomic data representation, and Marina Siponen for careful reading of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ali I, Peng C, Khan ZM, Naz I (2017) Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J Basic Microbiol 57:643–652Google Scholar
  2. Alphandéry E, Idbaih A, Adam C, Delattre J-Y, Schmitt C, Guyot F, Chebbi I (2017) Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 262:259–272Google Scholar
  3. Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314Google Scholar
  4. Amor M, Busigny V, Durand-Dubief M, Tharaud M, Ona-Nguema G, Gelabert A, Alphandery E, Menguy N, Benedetti MF, Chebbi I, Guyot F (2015) Chemical signature of magnetotactic bacteria. Proc Natl Acad Sci U S A 112:1699–1703Google Scholar
  5. Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002) Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Appl Biochem Biotechnol 98–100:833–840Google Scholar
  6. Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE (1998) Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater 184:241–244Google Scholar
  7. Bain J, Staniland SS (2015) Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine. Phys Chem Chem Phys 17:15508–15521Google Scholar
  8. Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408Google Scholar
  9. Barber-Zucker S, Keren-Khadmy N, Zarivach R (2016) From invagination to navigation: the story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci Publ Protein Soc 25:338–351Google Scholar
  10. Bazylinski DA, Williams TJ (2006) Ecophysiology of magnetotactic bacteria. In: Schüler D (ed) Magnetosomes and magnetoreception in bacteria, vol 3, pp 37–75. Springer, HeidelbergGoogle Scholar
  11. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519Google Scholar
  12. Bellini DS (1963a) Su di particolare comportamento di batteri d’acqua dolce università di  Pavia, PaviaGoogle Scholar
  13. Bellini S (1963b) Ultriori studi sui “Batteri Magnetosensibili”, università di  Pavia, PaviaGoogle Scholar
  14. Bellini S (2009a) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limnol 27:6Google Scholar
  15. Bellini S (2009b) On a unique behavior of freshwater bacteria. Chin J Oceanol Limnol 27:3Google Scholar
  16. Bennet M, Bertinetti L, Neely RK, Schertel A, Koernig A, Flors C, Mueller FD, Schueler D, Klumpp S, Faivre D (2015) Biologically controlled synthesis and assembly of magnetite nanoparticles. Faraday Discuss 181:71–83Google Scholar
  17. Benzerara K, Menguy N (2009) Looking for traces of life in minerals. Comptes Rendus Palevol 8:617–628Google Scholar
  18. Bergeron JRC, Hutto R, Ozyamak E, Hom N, Hansen J, Draper O, Byrne ME, Keyhani S, Komeili A, Kollman JM (2017) Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci 26:93–102Google Scholar
  19. Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379Google Scholar
  20. Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729Google Scholar
  21. Boucher M, Geffroy F, Prévéral S, Bellanger L, Selingue E, Adryanczyk-Perrier G, Péan M, Lefèvre CT, Pignol D, Ginet N, Meriaux S (2017) Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 121:167–178Google Scholar
  22. Carillo MA, Bennet M, Faivre D (2013) Interaction of Proteins Associated with the Magnetosome Assembly in Magnetotactic Bacteria As Revealed by Two-Hybrid Two-Photon Excitation Fluorescence Lifetime Imaging Microscopy Förster Resonance Energy Transfer. J Phys Chem B 117:14642–14648Google Scholar
  23. Chariaou M, Rahn-Lee L, Kind J, García-Rubio I, Komeili A, Gehring AU (2015) Anisotropy of bullet-shaped magnetite nanoparticles in the magnetotactic bacteria Desulfovibrio magneticus sp. strain RS-1. Biophys J 108:1268–1274Google Scholar
  24. Chen C, Chen L, Wang P, Wu L-F, Song T (2017) Magnetically-induced elimination of Staphylococcus aureus by magnetotactic bacteria under a swing magnetic field. Nanomedicine 13:363–370Google Scholar
  25. Dai Q, Long R, Wang S, Kankala RK, Wang J, Jiang W, Liu Y (2017) Bacterial magnetosomes as an efficient gene delivery platform for cancer theranostics. Microb Cell Factories 16:216Google Scholar
  26. Degauque J (1992) Magnétisme et matériaux magnétiques : introduction. J Phys IV Colloq 2:C3-1–C3–13Google Scholar
  27. Deng Q, Liu Y, Wang S, Xie M, Wu S, Chen A, Wu W (2013) Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials 6:3755–3763Google Scholar
  28. Descamps ECT, Abbé J-B, Pignol D, Lefèvre CT (2016) Controlled Biomineralization of Magnetite in Bacteria. In: Faivre D (ed) Iron Oxides. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 99–116Google Scholar
  29. Descamps ECT, Monteil CL, Menguy N, Ginet N, Pignol D, Bazylinski DA, Lefèvre CT (2017) Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Syst Appl Microbiol 40:280–289Google Scholar
  30. Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, Komeili A (2011) MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 82:342–354Google Scholar
  31. Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870Google Scholar
  32. Elcey CD, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol App Sci 3:408–417Google Scholar
  33. Elfick A, Rischitor G, Mouras R, Azfer A, Lungaro L, Uhlarz M, Herrmannsdörfer T, Lucocq J, Gamal W, Bagnaninchi P, Semple S, Salter DM (2017) Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci Rep 7:39755Google Scholar
  34. Erdal E, Demirbilek M, Yeh Y, Akbal Ö, Ruff L, Bozkurt D, Cabuk A, Senel Y, Gumuskaya B, Algın O, Colak S, Esener S, Denkbas EB (2018) A comparative study of receptor-targeted magnetosome and HSA-coated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model. Appl Biochem Biotechnol 185:91–113Google Scholar
  35. Farina M, Esquivel DMS, de Barros HGPL (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258Google Scholar
  36. Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Xu YZ, Loghin D, Essa S, Jancik S, Houle D, Lafleur M, Gaboury L, Tabrizian M, Kaou N, Atkin M, Vuong T, Batist G, Beauchemin N, Radzioch D, Martel S (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11:941–947Google Scholar
  37. Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D (2011) Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 8:1011–1018Google Scholar
  38. Flies CB, Peplies J, Schüler D (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731Google Scholar
  39. Fouladi JE, Lu Z, Savaria Y, Martel S (2007a) An integrated biosensor for the detection of bio-entities using magnetotactic bacteria and CMOS technology. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 119–122Google Scholar
  40. Fouladi JE, Andre W, Savaria Y, Martel S (2007b) System design of an integrated measurement electronic subsystem for bacteria detection using an electrode array and MC-1 magnetotactic bacteria. In 2006 International Workshop on Computer Architecture for Machine Perception and Sensing, pp. 38–41Google Scholar
  41. Frankel RB (2009) The discovery of magnetotactic/magnetosensitive bacteria. Chin J Oceanol Limnol 27(1):1–2Google Scholar
  42. Frankel RB, Blakemore RP (1989) Magnetite and magnetotaxis in microorganisms. Bioelectromagnetics 10:223–237Google Scholar
  43. Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in Freshwater Magnetotactic Bacteria. Science 203:1355–1356Google Scholar
  44. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583Google Scholar
  45. Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6:e21442Google Scholar
  46. Goldhawk DE, Lemaire C, McCreary CR, McGirr R, Dhanvantari S, Thompson RT, Figueredo R, Koropatnick J, Foster P, Prato FS (2009) Magnetic resonance imaging of cells overexpressing MagA, an endogenous contrast agent for live cell imaging. Mol Imaging 8:129–139Google Scholar
  47. Grünberg K, Müller E-C, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050Google Scholar
  48. Guo L, Huang J, Zheng L-M (2010) Efficient conjugation doxorubicin to bacterial magnetic nanoparticles via a triplex hands coupling reagent. J Nanosci Nanotechnol 10:6514–6519Google Scholar
  49. Guo L, Huang J, Zheng L-M (2011) Control generating of bacterial magnetic nanoparticle–doxorubicin conjugates by poly-L-glutamic acid surface modification. Nanotechnology 22:175102Google Scholar
  50. Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL (2012) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol 14:1722–1729Google Scholar
  51. Han L, Zhang A, Wang H, Pu P, Jiang X, Kang C, Chang J (2010) Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 21:417–426Google Scholar
  52. Islam T, Peng C, Ali I (2017) Morphological and cellular diversity of magnetotactic bacteria: a review. J Basic Microbiol 2018(58):378–389Google Scholar
  53. Ji B, Zhang S-D, Zhang W-J, Rouy Z, Alberto F, Santini C-L, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, WU LF (2017) The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ Microbiol 19:1103–1119Google Scholar
  54. Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75:3972–3979Google Scholar
  55. Kasama T, Pósfai M, Chong RKK, Finlayson AP, Buseck PR, Frankel RB, Dunin-Borkowski RE (2006) Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am Mineral 91:1216–1229Google Scholar
  56. Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224Google Scholar
  57. Kirschvink JL (1980) South-seeking magnetic bacteria: short communications. J Exp Biol 86:345–347Google Scholar
  58. Klumpp S, Lefèvre CT, Bennet M, Faivre D (2019) Swimming with magnets: from biological organisms to synthetic devices. Phys Rep 789:1–54Google Scholar
  59. Koernig A, Winklhofer M, Baumgartner J, Gonzalez TP, Fratzl P, Faivre D (2014) Magnetite crystal orientation in magnetosome chains. Adv Funct Mater 24:3926–3932Google Scholar
  60. Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721Google Scholar
  61. Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa É, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D (2014) Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9:193–197Google Scholar
  62. Komeili A (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245Google Scholar
  63. Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255Google Scholar
  64. Koulialias D, García-Rubio I, Rahn-Lee L, Komeili A, Löffler JF, Gehring AU, Charilaou M (2016) Competitive and cooperative anisotropy in magnetic nanocrystal chains of magnetotactic bacteria. J Appl Phys 120:83901Google Scholar
  65. Leão P, Teixeira LCRS, Cypriano J, Farina M, Abreu F, Bazylinski DA, Lins U (2016) North-seeking magnetotactic gammaproteobacteria in the Southern hemisphere. Appl Environ Microbiol 82:5595–5602Google Scholar
  66. Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526Google Scholar
  67. Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F (2009) Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean sea. Environ Microbiol 11:1646–1657Google Scholar
  68. Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76:3740–3743Google Scholar
  69. Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA (2011a) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13:2342–2350Google Scholar
  70. Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel RB, Bazylinski DA (2011b) A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–1723Google Scholar
  71. Lefèvre CT, Viloria N, Schmidt ML, Posfai M, Frankel RB, Bazylinski DA (2012) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450Google Scholar
  72. Lefèvre CT, Bennet M, Landau L, Vach P, Pignol D, Bazylinski DA, Frankel RB, Klumpp S, Faivre D (2014) Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J 107:527–538Google Scholar
  73. Li J, Menguy N, Arrio M-A, Sainctavit P, Juhin A, Wang Y, Chen H, Bunau O, Otero E, Ohresser P, pan Y (2016) Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element- and site-specific X-ray magnetic circular dichroism analyses. J R Soc Interface 13:20160355Google Scholar
  74. Li J, Zhang H, Menguy N, Benzerara K, Wang F, Lin X, Chen Z, Pan Y (2017) Single-cell resolution of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy. Appl Environ Microbiol 83 Google Scholar
  75. Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y (2014) Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol 16:2646–2658Google Scholar
  76. Lin W, Pan Y, Bazylinski DA (2017) Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep 9:345–356Google Scholar
  77. Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y (2018) Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J 1Google Scholar
  78. Lisjak D, Mertelj A (2018) Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications. Prog Mater Sci 95:286–328Google Scholar
  79. Liu S, Wiatrowski HA (2018) Reduction of Hg(II) to Hg(0) by biogenic magnetite from two magnetotactic bacteria. Geomicrobiol J 35:198–208Google Scholar
  80. Liu Y-G, Dai Q-L, Wang S-B, Deng Q-J, Wu W-G, Chen A-Z (2015) Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-l-glutamic acid-modified bacterial magnetosomes. Int J Nanomedicine 10:1387–1397Google Scholar
  81. Liu J, Zhang W, Li X, Li X, Chen X, Li J-H, Teng Z, Xu C, Santini C-L, Zhao L, Zhao Y, Zhang H, Zhang WJ, Xu K, Li C, Pan Y, Xiao T, Pan H, Wu LF (2017) Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Sci Rep 7:17964Google Scholar
  82. Lohße A, Borg S, Raschdorf O, Kolinko I, Tompa E, Pósfai M, Faivre D, Baumgartner J, Schüler D (2014) Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol 196:2658–2669Google Scholar
  83. Long R, Liu Y, Dai Q, Wang S, Deng Q, Zhou X (2016) A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials 9:889Google Scholar
  84. Lu Z, Truong O-D, André W, Martel S (2006) Preliminary design of a biosensor based on MC-1 magnetotactic bacteria. Ninth World Congress on Biosensors (Biosensor), May, TorontoGoogle Scholar
  85. Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261Google Scholar
  86. Martel S (2017) Targeting active cancer cells with smart bullets. Ther Deliv 8:301–312Google Scholar
  87. Matsunaga T, Sakaguchi T, Tadakoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655Google Scholar
  88. Mériaux S, Boucher M, Marty B, Lalatonne Y, Prévéral S, Motte L, Lefèvre CT, Geffroy F, Lethimonnier F, Péan M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N (2015) Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials 4(7):1076–1083Google Scholar
  89. Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc Lond B 251:231–236Google Scholar
  90. Mirabello G, Lenders JJM, Sommerdijk NAJM (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45:5085–5106Google Scholar
  91. Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT (2018) Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol 84:AEM.02865-17.  https://doi.org/10.1128/AEM.02865-17
  92. Morillo V, Abreu F, Araujo AC, de Almeida LGP, Prast AE, Farina M, de Vasconcelos ATR, Bazylinski DA, Lins U (2014) Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria. Front Microbiol 5.  https://doi.org/10.3389/fmicb.2014.00072
  93. Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci 107:5593–5598Google Scholar
  94. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Higuchi A, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502Google Scholar
  95. Naresh M, Das S, Mishra P, Mittal A (2012) The chemical formula of a magnetotactic bacterium. Biotechnol Bioeng 109:1205–1216Google Scholar
  96. Newell AJ (2009) Transition to superparamagnetism in chains of magnetosome crystals. Geochem Geophys Geosyst 10:Q11Z08Google Scholar
  97. Nisticò R (2017) Magnetic materials and water treatments for a sustainable future. Res Chem Intermed 43:6911–6949Google Scholar
  98. Orlando T, Mannucci S, Fantechi E, Conti G, Tambalo S, Busato A, Innocenti C, Ghin L, Bassi R, Arosio P, Orsini F, Sangregorio C, Corti M, Casula MF, Marzola P, Lascialfari A, Sbarbati A (2016) Characterization of magnetic nanoparticles from as potential theranostics tools. Contrast Media & Molecular Imaging 11(2):139–145Google Scholar
  99. Pan W, Xie C, Lv J (2012) Screening for the interacting partners of the proteins MamK and MamJ by two-hybrid genomic DNA library of Magnetospirillum magneticum AMB-1. Curr Microbiol 64:515–523Google Scholar
  100. Pan Y, Li N, Mu J, Zhou R, Xu Y, Cui D, Wang Y, Zhao M (2015) Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biotechnol 99:703–715Google Scholar
  101. Plan Sangnier A, Preveral S, Curcio A, Silva A KA, Lefèvre CT, Pignol D, Lalatonne Y, Wilhelm C (2018) Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: photothermia is far more efficient than magnetic hyperthermia. J Control Release 279:271–281Google Scholar
  102. Popp F, Armitage JP, Schüler D (2014) Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat Commun 5:5398Google Scholar
  103. Posfai M, Lefevre CT, Trubitsyn D, Bazylinski DA, Frankel RB (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 4:344Google Scholar
  104. Prozorov R, Prozorov T, Mallapragada SK, Narasimhan B, Williams TJ, Bazylinski DA (2007) Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys Rev B 76:54406Google Scholar
  105. Prozorov T, Perez-Gonzalez T, Valverde-Tercedor C, Jimenez-Lopez C, Yebra-Rodriguez A, Körnig A, Faivre D, Mallapragada SK, Howse PA, Bazylinski DA, Prozorov R (2014) Manganese incorporation into the magnetosome magnetite: magnetic signature of doping. Eur J Mineral:457–471Google Scholar
  106. Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014) Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Sep Purif Technol 136:10–17Google Scholar
  107. Quinlan A, Murat D, Vali H, Komeili A (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80:1075–1087Google Scholar
  108. Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D (2013) The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol 89:872–886Google Scholar
  109. Raschdorf O, Forstner Y, Kolinko I, Uebe R, Plitzko JM, Schüler D (2016) Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet 12:e1006101Google Scholar
  110. Raschdorf O, Bonn F, Zeytuni N, Zarivach R, Becher D, Schüler D (2018) A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. J Proteome 172:89–99Google Scholar
  111. Rioux J-B, Philippe N, Pereira S, Pignol D, Wu L-F, Ginet N (2010) A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS One 5:e9151Google Scholar
  112. Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D (2013) Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13:4881–4889Google Scholar
  113. Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221Google Scholar
  114. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385Google Scholar
  115. Schwarz S, Fernandes F, Sanroman L, Hodenius M, Lang C, Himmelreich U, Schmitz-Rode T, Schueler D, Hoehn M, Zenke M, Hieronymus T (2009) Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater 321(10):1533–1538Google Scholar
  116. Sengupta A, Quiaoit K, Thompson RT, Prato FS, Gelman N, Goldhawk DE (2014) Biophysical features of MagA expression in mammalian cells: implications for MRI contrast. Front Microbiol 5:29.  https://doi.org/10.3389/fmicb.2014.00029
  117. Simmons SL, Bazylinski DA, Edwards KJ (2006) South-seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374Google Scholar
  118. Siponen MI, Legrand P, Widdrat M, Jones SR, Zhang W-J, Chang MCY, Faivre D, Arnoux P, Pignol D (2013) Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502:681–684Google Scholar
  119. Smith MJ, Sheehan PE, Perry LL, O’Connor K, Csonka LN, Applegate BM, Whitman LJ (2006) Quantifying the magnetic advantage in magnetotaxis. Biophys J 91:1098–1107Google Scholar
  120. Staniland S, Williams W, Telling N, Laan GVD, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol 3:158–162Google Scholar
  121. Stanton MM, Park B-W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S (2017) Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano 11:9968–9978Google Scholar
  122. Sun J-B, Duan J-H, Dai S-L, Ren J, Zhang Y-D, Tian J-S, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117Google Scholar
  123. Sun J, Tang T, Duan J, Xu P, Wang Z, Zhang Y, Wu L, Li Y (2010) Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology 4:271–283Google Scholar
  124. Sun J-B, Duan J-H, Dai S-L, Ren J, Guo L, Jiang W, Li Y (2018) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 101:1313–1320Google Scholar
  125. Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8:5049–5060Google Scholar
  126. Talib A, Khan AA, Ahmed H, Jilani G, Talib A, Khan AA, Ahmed H, Jilani G (2017) The nano-magnetic dancing of bacteria hand-in-hand with oxygen. Braz Arch Biol Technol 60 Google Scholar
  127. Tanaka M, Nakata Y, Mori T, Okamura Y, Miyasaka H, Takeyama H, Matsunaga T (2008) Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Appl Environ Microbiol 74:3342–3348Google Scholar
  128. Tanaka M, Arakaki A, Staniland SS, Matsunaga T (2010) Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl Environ Microbiol 76:5526–5532Google Scholar
  129. Tanaka M, Knowles W, Brown R, Hondow N, Arakaki A, Baldwin S, Staniland S, Matsunaga T (2016) Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Appl Environ Microbiol 82:3886–3891Google Scholar
  130. Tang Y-S, Wang D, Zhou C, Ma W, Zhang Y-Q, Liu B, Zhang S (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195Google Scholar
  131. Taoka A, Kiyokawa A, Uesugi C, Kikuchi Y, Oestreicher Z, Morii K, Eguchi Y, Fukumori Y (2017) Tethered magnets are the key to magnetotaxis: direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells. mBio 8:e00679–e00617Google Scholar
  132. Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D (2016) Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol 14:88Google Scholar
  133. Uebe R, Schüler D (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 14:621–637Google Scholar
  134. Wang C, Sun G, Wang Y, Kong N, Chi Y, Yang L, Xin Q, Teng Z, Wang X, Wen Y, Li Y, Xia G (2017) Bacterial magnetic particles improve testes-mediated transgene efficiency in mice. Drug Deliv 24:651–659Google Scholar
  135. Wang X, Wang J-G, Geng Y-Y, Wang J-J, Zhang X-M, Yang S-S, Jiang W, Liu W-Q (2018) An enhanced anti-tumor effect of apoptin-cecropin B on human hepatoma cells by using bacterial magnetic particle gene delivery system. Biochem Biophys Res Commun 496:719–725Google Scholar
  136. Winklhofer M, Chang L, Eder SHK (2014) On the magnetocrystalline anisotropy of greigite (Fe3S4). Geochem Geophys Geosyst 15:1558–1579Google Scholar
  137. Wolfe RS, Thauer RK, Pfennig N (1987) A “capillary racetrack” method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol 3:31–35Google Scholar
  138. Xiang L, Bin W, Huali J, Wei J, Jiesheng T, Feng G, Ying L (2007) Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med 9:679–690Google Scholar
  139. Yamamoto D, Taoka A, Uchihashi T, Sasaki H, Watanabe H, Ando T, Fukumori Y (2010) Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc Natl Acad Sci U S A 107:9382–9387Google Scholar
  140. Yang W, Bai Y, Wang X, Dong X, Li Y, Fang M (2016a) Attaching biosynthesized bacterial magnetic particles to polyethylenimine enhances gene delivery into mammalian cells. J Biomed Nanotechnol 12:789–799Google Scholar
  141. Yang W, Bai Y, Wang X, Dong X, Li Y, Fang M (2016b) Attaching biosynthesized bacterial magnetic particles to polyethylenimine enhances gene delivery into mammalian cells. J Biomed Nanotechnol 12:789–799Google Scholar
  142. Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci 108:E480–E487Google Scholar
  143. Zurkiya O, Chan AWS, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBCSaint Paul-Lez-DuranceFrance

Personalised recommendations