Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3249–3264 | Cite as

Naturally occurring of α,β-diepoxy-containing compounds: origin, structures, and biological activities

  • Vera Vil
  • Tatyana A. Gloriozova
  • Vladimir V. Poroikov
  • Alexander O. Terent’ev
  • Nick Savidov
  • Valery M. DembitskyEmail author
Mini-Review
  • 147 Downloads

Abstract

Diepoxy-containing compounds are widely distributed in nature. These metabolites are found in plants and marine organisms and are also produced by many microorganisms, fungi, or fungal endophytes. Many of these metabolites are antibiotics and exhibit a wide variety of biological activities. More than 80 α,β-diepoxy-containing compounds are presented in this article, which belong to different classes of chemical compounds including lipids, terpenoids, alkaloids, quinones, hydroquinones, and pyrones. The main activities that characterize α,β-diepoxy-containing compounds are antineoplastic with confidence up to 99%, antifungal with confidence up to 94%, antiinflammatory with confidence up to 92%, or antibacterial with confidence up to 78%. In addition, these metabolites can be used as a lipid metabolism regulator with a certainty of up to 81%, antiviral (Arbovirus) activity with a certainty of up to 71%, or antiallergic activity with confidence up to 69%. These data on the biological activity of diepoxy-containing compounds are of considerable interest to pharmacologists, chemists, and medical professionals who are involved in phytomedicine and related areas of science and industry.

Keywords

Diepoxides Microorganisms Fungi Algae Invertebrates Plant Activities 

Notes

Acknowledgements

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences for 2013-2020 (Grant RFBR No. 12-04-91,445).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Alabugin IV (2016) Stereoelectronic effects: the bridge between structure and reactivity. Wiley, HobokenGoogle Scholar
  2. Alabugin IV, Bresch S, Gomes GP (2015) Orbital hybridization: a key electronic factor in control of structure and reactivity. J Phys Org Chem 28:147–162Google Scholar
  3. Almourabit A, Ahond A, Chiaroni A, Poupat C, Riche C, Potier P, Laboute P, Menou JL (1988) Invertébrés marins du lagon Néo-Calédonien, IX. Havannachlorhydrines, nouveaux métabolites de Xenia membranacea: Étude structurale et configuration absolue. J Nat Prod 51(2):282–292Google Scholar
  4. Asakawa Y, Lin X, Tori M, Kondo K (1990) Fusicoccane-, dolabellane- and rearranged labdane-type diterpenoids from the liverwort Pleurozia gigantean. Phytochemistry 29(8):2597–2603Google Scholar
  5. Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: Present and future. Chem Rev 114(2):1082–1115Google Scholar
  6. Berrueab F, Kerr RG (2009) Diterpenes from gorgonian corals. Nat Prod Rep 26:681–710Google Scholar
  7. Bishara A, Rudi A, Goldberg I, Benayahu Y, Kashman Y (2006) Novaxenicins A–D and xeniolides I–K, seven new diterpenes from the soft coral Xenia novaebrittanniae. Tetrahedron 62(51):12092–12097Google Scholar
  8. Borders DB, Barbatschi F, Shay AJ, Shu P (1969) Fermentation, isolation, and characterization of LL-Z1220, a new antibiotic. Antimicrob Agents Chemother (Bethesda) 9:233–235Google Scholar
  9. Borders DB, Shu P, Lancaster JE (1972) Structure of LL-Z1220. New antibiotic containing a cyclohexene diepoxide ring system. J Am Chem Soc 94(7):2540–2541Google Scholar
  10. Brochini CB, Roque NF, Lago JHG (2009) Minor sesquiterpenes from the volatile oil from leaves of Guarea guidonia Sleumer (Meliaceae). Nat Prod Res 23(17):1615–1620Google Scholar
  11. Che Y, Gloer JB, Koster B, Malloch D (2002) Decipienin A and decipienolides A-B: new bioactive metabolites from the coprophilous fungus Podopsora decipiens. J Nat Prod 65:916–919Google Scholar
  12. Chew W, Harpp DN (1993) Recent aspects of thiirane chemistry. Sulfur Rep 15(1):1–39Google Scholar
  13. Chianese G, Yu HB, Yang F, Sirignano C, Luciano P, Han BN, Khan S, Lin HW, Taglialatela-Scafati O (2016) PPAR modulating polyketides from a Chinese Plakortis simplex and clues on the origin of their chemodiversity. J Organomet Chem 81(12):5135–5143Google Scholar
  14. Cueto M, D’Croz L, Mate JL, San-Martın A, Darias J (2005) Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? Org Lett 7(3):415–418Google Scholar
  15. Daferner M, Mensch S, Anke T, Sterner O (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch 54C:474–480Google Scholar
  16. De Marino S, Ummarino R, D’Auria MV, Chini MG, Bifulco G, Renga B, D’Amore C, Fiorucci S, Debitus C, Zampella A (2011) Theonellasterols and conicasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. J Med Chem 54(8):3065–3075Google Scholar
  17. Del Cuenca MR, Bardon A, Catalan CAN, Kokke WCMC (1988) Sesquiterpene lactones from Mikania micrantha. J Nat Prod 51(3):625–626Google Scholar
  18. Dembitsky VM (2004) Chemistry and biodiversity of the biologically active natural glycosides. Chem Biodivers 1(5):673–778Google Scholar
  19. Dembitsky VM (2006) Anticancer activity of natural and synthetic acetylenic lipids. Lipids 41(10):883–924Google Scholar
  20. Dembitsky VM, Kuklev DV (2017) Acetylenic epoxy fatty acids: chemistry, synthesis, and their pharmaceutical applications. In: Ahmad MU (ed) Fatty acids chemistry, synthesis, and applications. Academic Press and AOCS Press, San Diego, CA, USA, pp 121–147Google Scholar
  21. Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589Google Scholar
  22. Dembitsky V, Shkrob I, Hanus LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152(2):209–215Google Scholar
  23. Dembitsky VM, Gloriozova TA, Poroikov VV (2017) Pharmacological activities of epithio steroids. J Pharm Res Int 18(4):1–19.  https://doi.org/10.9734/JPRI/2017/36199 Google Scholar
  24. Dembitsky VM, Gloriozova TA, Poroikov VV (2018) Naturally occurring marine α,β-epoxy steroids: origin and biological activities. Vietnam J Chem 56(4):409–433Google Scholar
  25. Dhar TK, Siddiqui KAI, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23(51):5459–5462Google Scholar
  26. Erickson KL, Beutler JA, Gray GN, Cardellina JH II, Boyd MR (1995) Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red alga Laurencia majuscula. J Nat Prod 58(12):1848–1860Google Scholar
  27. Ernouf G, Wilt IK, Zahim S, Wuest WM (2018) Epoxy isonitriles, a unique class of antibiotics: synthesis of their metabolites and biological investigations. Chembiochem 19:2448–2452.  https://doi.org/10.1002/cbic.201800550 Google Scholar
  28. Facey PC, Peart PC, Porter RB (2010) The antibacterial activities of mikanolide and its derivatives. West Indian Med J 59(3):249–252Google Scholar
  29. Fernandes L, Kamat SY, Paknikar SK (1980) New diterpenoids of the brown seaweed Stoechospermum marginatum: structure of stoechospermol. Tetrahedron Lett 21(23):2249–2252Google Scholar
  30. Fields BA, Reeve J, Bartholomaeus A, Mueller U (2014) Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin. Food Chem Toxicol 72:234–241Google Scholar
  31. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457Google Scholar
  32. Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004Google Scholar
  33. Fujii N, Katsuyama T, Kobayashi E, Hara M, Nakano H (1995) The clecarmycins, new antitumor antibiotics produced by Streptomyces: fermentation, isolation and biological properties. J Antibiot (Tokyo) 48(8):768–772Google Scholar
  34. Fujiwara A, Okuda T, Masuda S, Shiomi Y, Miyamoto C, Sekine Y, Tazoe M, Fujiwara M (1982) Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46(7):1803–1809Google Scholar
  35. Fullas F, Brown DM, Wani MC, Wall ME, Chagwedera TE, Farnsworth NR, Pezzuto JM, Kinghorn AD (1995) Gummiferol, a cytotoxic polyacetylene from the leaves of Adenia gummifera. J Nat Prod 58(10):1625–1628Google Scholar
  36. Fyaz I.F M, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. European Journal of Medicinal Chemistry, 44, 3373–3387Google Scholar
  37. Garson MJ (1993) The biosynthesis of marine natural products. Chem Rev 93(5):1699–1733Google Scholar
  38. Gerwick WH, Fenical W, Ven Engen D, Clardy J (1980) Isolation and structure of spatol, a potent inhibitor of cell reolication from the brown seaweed Spatoglossum schmittii. J Am Chem Soc 102(27):7991–7993Google Scholar
  39. Gloriozova TA, Dembitsky VM (2018) The impact factor of the thiirane group in organic compounds on their predicted pharmacological activities. Int J Chem Studies 6(1):832–839Google Scholar
  40. Gössinger E (2010) Picrotoxanes. Prog Chem Org Nat Prod 93:5–255Google Scholar
  41. Herz W, Sharma RP (1975) New germacranolides from Liatris species. Phytochemistry 14(7):1561–1567Google Scholar
  42. Herz W, Santhanam PS, Subramaniam PS, Schmid JJ (1967) The structure of mikanolide, a new sesquiterpene dilactone from Mikania scandens (L.) Willd. Tetrahedron Lett 8(32):3111–3115Google Scholar
  43. Holub M, Buděšínský M, Smítalová Z, Šaman D, Rychłewska U (1985) Structure of isosilerolide, relative and absolute configuration of silerolide and lasolide - Sesquiterpenic lactones of new stereoisomeric type of eudesmanolides. Collect Czechoslov Chem Commun 51:903–929Google Scholar
  44. Hori Y, Hino M, Kawai Y, Kiyoto S, Terano H, Kohsaka M, Aoki H, Hashimoto M, Imanaka H (1986) A new antitumor antibiotic, chromoxymycin. II. Production, isolation, characterization and antitumor activity. J Antibiot (Tokyo) 39(1):12–16Google Scholar
  45. Igarashi Y, Kuwamori Y, Takagi K, Ando T, Fudou R, Furumai T, Oki T (2000) Xanthoepocin, a new antibiotic from Penicillium simplicissimum IFO5762. J Antibiot (Tokyo) 53(9):928–933Google Scholar
  46. Itoh J, Shomura T, Tsuyuki T, Yoshida J, Ito M, Sezaki M, Kojima M (1986a) Studies on a new antibiotic SF-2330. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 39(6):773–779Google Scholar
  47. Itoh J, Tsuyuki T, Fujita K, Sezaki M (1986b) Studies on a new antibiotic SF-2330. II. The structural elucidation. J Antibiot (Tokyo) 39(6):780–783Google Scholar
  48. Iwagawa T, Amano Y, Nakatani M, Hase T (1996) New xenia diterpenoids from a soft coral, Xenia species containing fatty acyl side chains. Bull Chem Soc Japan 69(5):1309–1312Google Scholar
  49. Iwami M, Kawai Y, Kiyoto S, Terano H, Kohsaka M, Aoki H, Imanaka H (1986) A new antitumor antibiotic, chromoxymycin. I. Taxonomic studies on the producing strain: a new subspecies of the genus Streptomyces. J Antibiot (Tokyo) 39(1):6–11Google Scholar
  50. Jakupovic J, Schuster A, Bohlmann F, Dillon MO (1988) Lumiyomogin, ferreyrantholide, fruticolide and other sesquiterpene lactones from Ferreyranthus fruticosus. Phytochemistry 27:1113–1120Google Scholar
  51. Jogia MK, Andersen RJ, Clardy J, Dublin HT, Sinclair ARE (1989) Crotofolane diterpenoids from the African shrub Croton dichogamus Pax. J Organomet Chem 54:1654–1657Google Scholar
  52. Kawakami S, Matsunami K, Otsuka H, Shinzato T, Takeda Y, Kawahata M, Yamaguchi K (2010) A crotofolane-type diterpenoid and a rearranged nor-crotofolane-type diterpenoid with a new skeleton from the stems of Croton cascarilloides. Tetrahedron Lett 51(33):4320–4322Google Scholar
  53. Kimura J, Kamada N, Tsujimoto Y (1999) Fourteen chamigrane derivatives from a red alga, Laurencia nidifica. Bull Chem Soc Jpn 72(2):289–292Google Scholar
  54. Kinoshita T, Itaki N, Hikita M, Aoyagi Y, Hitotsuyanagi Y, Takeya K (2005) The isolation and structure elucidation of a new sesquiterpene lactone from the poisonous plant Coriaria japonica (Coriariaceae). Chem Pharm Bull (Tokyo) 53(8):1040–1042Google Scholar
  55. Koike K, Fukuda H, Mitsunaga K, Ohmoto T (1991) Picrodendrins B, G and J, new picrotoxane terpenoids from Picrodendron baccatun. Chem Pharm Bull 39(4):934–936Google Scholar
  56. König GM, Coll JC, Bowden BF, Gulbis JM, MacKay MF, Labarre SC, Laurent D (1989) The structure determination of a xenicane diterpene from Xenia garciae. J Nat Prod 52(2):294–299Google Scholar
  57. Kuklev DV, Dembitsky VM (2014) Epoxy acetylenic lipids: their analogues and derivatives. Prog Lipid Res 56:67–91Google Scholar
  58. Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomedicine 20(13):1145–1159Google Scholar
  59. Kuklev DV, Gloriozova TA, Poroikov VV, Dembitsky VM (2017) Pharmacological activities of thiirane-containing fatty (carboxylic) acids and their derivatives. Chem Res J 2(6):19–27Google Scholar
  60. Kupchan SM, Hemingway RJ, Coggon P, McPhail AT, Sim GA (1968) Tumor inhibitors. XXIX. Crotepoxide, a novel cyclohexane diepoxide tumor inhibitor from Croton macrostachys. J Am Chem Soc 90(11):2982–2983Google Scholar
  61. Lago JHG, Brochinia CB, Roque NF (2002) Terpenoids from Guarea guidonia. Phytochemistry 60(4):333–338Google Scholar
  62. Larsen L, Joyce NI, Sansom CE, Cooney JM, Jensen DJ, Perry NB (2015) Sweet poisons: honeys contaminated with glycosides of the neurotoxin tutin. J Nat Prod 78(6):1363–1369Google Scholar
  63. Laurella LC, Cerny N, Bivona AE, Sánchez Alberti A, Giberti G, Malchiodi EL (2017) Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. PLoS Negl Trop Dis 11(9):e0005929Google Scholar
  64. Lelong H, Ahond A, Chiaroni A, Poupat C, Riche C, Potier P, Pusset J, Pusset M, Laboute P, Menou JL (1987) Invertébrés marins du lagon Néo-Calédonien, VIII métabolites terpéniques de Xenia membranacea. J Nat Prod 50(2):203–210Google Scholar
  65. Liaw CC, Chang FR, Wu YC, Wang HK, Nakanishi Y, Bastow KF, Lee KH (2004) Montacin and cis-montacin, two new cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona montana. J Nat Prod 67(11):1804–1818Google Scholar
  66. Liaw CC, Kuo YH, Hwang TL, Shen YC (2008) Eupatozansins A – C, sesquiterpene lactones from Eupatorium chinense var. tozanense. Helv Chim Acta 91(11):2115–2121Google Scholar
  67. Lowden P (2006) Aziridine natural products – discovery, biological activity and biosynthesis. In: Aziridines and Epoxides in Organic Synthesis, pp 399–442.  https://doi.org/10.1002/3527607862.ch11 Google Scholar
  68. Loyola LA, Morales G, Rodriguez B, Jiménez-Barbero J (1990) Mulinic and isomulinic acids. Rearranged diterpenes with a new carbon skeleton from Mulinum crassifolium. Tetrahedron 46(15):5413–5420Google Scholar
  69. Lu X (1990) The isolation and structure of tripchlorolide (T4) from Tripterygium wilfordii. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 12(3):157–161Google Scholar
  70. Ma P, Lu X, Yang J, Yang J, Zheng Q (1992) 16-Hydroxytriptolide: an active compound from Tripterygium wilfordii. J Chin Pharm Sci 1(2):12–18Google Scholar
  71. Manns D, Hartman R (1992) Annuadiepoxide, a new polyacetylene from the aerial parts of Artemisia annua. J Nat Prod 55(1):29–32Google Scholar
  72. Massanet GM, Guerra FM, Jorge ZD, Astorga C (1997) Sesquiterpenolides from Melanoselinum decipiens. Phytochemistry 45(8):1645–1651Google Scholar
  73. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333Google Scholar
  74. Morris LJ, Holman RT, Fonte K (1961) Naturally occurring epoxy acids: I. detection and evaluation of epoxy fatty acids by paper, thin-layer, and gas-liquid chromatography. J Lipid Res 2(1):68–75Google Scholar
  75. Nagashima F, Izumo H, Takaoka S, Tori M, Asakawa Y (1994) Sesqui- and diterpenoids from the panamanian liverwort Bryopteris filicina. Phytochemistry 37(2):433–439Google Scholar
  76. Nakamura H, Asari T, Murai A, Kan Y, Kondo T, Yoshida K, Ohizumi Y (1995) Zooxanthellatoxin-A, a potent vasoconstrictive 62-membered lactone from a symbiotic Dinoflagellate. J Am Chem Soc 117(1):550–551Google Scholar
  77. Ning L, Qu G, Ye M, Guo H, Bi K, Guo D (2003) Cytotoxic biotransformed products from triptonide by Aspergillus niger. Planta Med 69(9):804–808Google Scholar
  78. Nitz S, Kollmannsberger H, Spraul MH, Drawert F (1989) Oxygenated derivatives of menthatriene in parsley leaves. Phytochemistry 28(11):3051–3054Google Scholar
  79. Ohno N, Gershenzon J, Roane C, Mabry TJ (1980) 11,13-Dehydrodesacetylmatricarin and other sesquiterpene lactones from Artemisia ludoviciana var. ludoviciana and the identity of artecanin and chyrsartemin B. Phytochemistry 19(1):103–106Google Scholar
  80. Okada K, Mori M, Shimazaki K, Chuman T (1990) Behavioral responses of male Periplaneta americana L. to female sex pheromone components, periplanone-A and periplanone-B. J Chem Ecol 16:2605–2614Google Scholar
  81. Okuda T, Yoshida T (1967) The correlation of coriamyrtin and tutin, and their absolute configurations. Chem Pharm Bull 15(12):1955–1965Google Scholar
  82. Okuda T, Yoshida T, Chen XM, Xie JX, Fukushima M (1987) Corianin from Coriaria japonica and sesquiterpene lactones from Loranthus parasiticus Merr. Used for treatment of schizophrenia. Chem Pharm Bull 35(1):182–187Google Scholar
  83. Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol 26(3):307–315Google Scholar
  84. Padwa A, Murphree SS (2006) Epoxides and aziridines - a mini review. ARKIVOC III:6–33Google Scholar
  85. Pan JY, Chen SL, Li MY, Li J, Yang MH, Wu J (2010) Limonoids from the seeds of a Hainan mangrove, Xylocarpus granatum. J Nat Prod 73(10):1672–1679Google Scholar
  86. Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, Sykes RB (1984) Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J Antibiot (Tokyo) 37(5):431–440Google Scholar
  87. Poroikov VV, Gloriozova TA, Dembitsky VM (2017) Natural occurring thiirane containing compounds: origin, chemistry, and their pharmacological activities. Pharm Chem J 4(5):107–120Google Scholar
  88. Rodríguez AD, Boulanger A (1996) Americanolides A−C, new guaianolide sesquiterpenes from the Caribbean Sea plume Pseudopterogorgia americana. J Nat Prod 59(7):653–657Google Scholar
  89. Rodríguez AD, Soto JJ (1998) Pseudopterane and norcembrane diterpenoids from the Caribbean Sea plume Pseudopterogorgia acerosa. J Nat Prod 61(3):401–404Google Scholar
  90. Rodríguez AD, Boulanger A, Martínez JR, Huang SD (1998) Sesquiterpene lactones from the Caribbean Sea plume Pseudopterogorgia americana. J Nat Prod 61(4):451–455Google Scholar
  91. Rukachaisirikul V, Kannai S, Klaiklay S, Phongpaichit S, Sakayaroj J (2013) Rare 2-phenylpyran-4-ones from the seagrass-derived fungi Polyporales PSU-ES44 and PSU-ES83. Tetrahedron 69(34):6981–6986Google Scholar
  92. Salomatina OV, Yarovaya O, Barkhash VA (2005) Intramolecular involvement of an oxygen-containing nucleophilic group in epoxy ring opening. Russ J Org Chem 41(2):155–185Google Scholar
  93. Sassa T, Kinoshita H, Nukina M (1998) Acremolactone A, a novel herbicidal epoxy-hydropyranyl γ-lactone from Acremonium roseum I4267. J Antibiot 51(10):967–969Google Scholar
  94. Sato Y, Watabe H, Nakazawa T, Shomura T, Yamamoto H, Sezaki M, Kondo S (1989) Ankinomycin, a potent antitumor antibiotic. J Antibiot (Tokyo) 42(1):149–152Google Scholar
  95. Savidov N, Gloriozova TA, Poroikov VV, Dembitsky VM (2018) Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: origin and biological activities. Steroids 140:114–124Google Scholar
  96. Scotti MT, Fernandes MB, Ferreira MJP, Emerenciano VP (2007) Quantitative structure–activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg Med Chem 15(8):2927–2934Google Scholar
  97. Shen YH, Li SH, Li RT, Han QB, Zhao QS, Liang L, Sun HD, Lu Y, Cao P, Zheng QT (2004) Coriatone and corianlactone, two novel sesquiterpenes from Coriaria nepalensis. Org Lett 6(10):1593–1595Google Scholar
  98. Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anti Cancer Agents Med Chem 8(2):132–170Google Scholar
  99. Sivakumari V, Dhinakaran J, Rajendran A (2009) Screening and productivity of penicillin antibiotic from Penicillium sp. J Environ Sci Eng 51(4):247–248Google Scholar
  100. Smetanina OF, Yurchenko AN, Afiyatullov SS, Kalinovsky AI, Pushilin MA, Khudyakova YA, Slinkina NN, Ermakova SP, Yurchenko EA (2012) Oxirapentyns B–D produced by a marine sediment-derived fungus Isaria felina (DC.) Fr. Phytochem Lett 5(1):165–169Google Scholar
  101. Song JT, Han Y, Wang XL, Shen T, Lou HX, Wang XN (2015) Diterpenoids from the twigs and leaves of Croton caudatus var. tomentosus. Fitoterapia 107:54–59Google Scholar
  102. Sundin A, Anke H, Bergquist KE, Mayer A, Sheldrick WS, Stadler M, Sterner O (1993) The structure determination of panellon and panellol, two 14-noreudesmanes isolated from Resupinatus leightonii. Tetrahedron 49(34):7519–7524Google Scholar
  103. Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31:247–258Google Scholar
  104. Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot (Tokyo) 28(2):161–162Google Scholar
  105. Tana RX, Jakupovic J, Bohlmann F, Jia ZJ, Huneck S (1991) Sesquiterpene lactones and other constituents from Artemisia xerophytica. Phytochemistry 30(2):583–587Google Scholar
  106. Terent’ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russ Chem Rev 80:807–828Google Scholar
  107. Terent’ev AO, Borisov DA, Vil’ VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114Google Scholar
  108. Tomoda H, Tabata N, Yang DJ, Takayanagi H, Omura S (1995) Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. III. Production, isolation and structure elucidation of new components. J Antibiot (Tokyo) 48(8):793–804Google Scholar
  109. Tschersich R, Bisterfeld C, Pietruszka J (2018) Cyclopropyl lactone-containing marine oxylipins. Stud Nat Prod Chem 55:145–180Google Scholar
  110. Vicente J, Stewart AK, van Wagoner RM, Elliott E, Bourdelais AJ, Wright JLC (2015) Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto Rican sponge Scopalina ruetzleri. Mar Drugs 13:4682–4700Google Scholar
  111. Vil VA, Yaremenko IA, Ilovaisky AI, Terent’ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881.  https://doi.org/10.3390/molecules22111881 Google Scholar
  112. Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM (2018) Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102(18):7657–7667Google Scholar
  113. Vil VA, Terent’ev AO, Al Quntar AAA, Gloriozova TA, Savidov N, Dembitsky VM (2019) Oxetane-containing metabolites: origin, structures, and biological activities. Appl Microbiol Biotechnol 103.  https://doi.org/10.1007/s00253-018-09576-z
  114. Wang M, Tietjen I, Chen M, Williams DE, Daoust J, Brockman MA, Andersen RJ (2016) Sesterterpenoids isolated from the sponge Phorbas sp. activate latent HIV-1 provirus expression. J Organomet Chem 81(22):11324–11334Google Scholar
  115. Wessjohann LA, Brandt W (2003) Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem Rev 103(4):1625–1648Google Scholar
  116. Williams PH, Sullivan WJ (1961) 2,3,4,5-Diepoxy compounds. US Patent 2:980,707Google Scholar
  117. Wu HC, Ge HM, Zang LY, Bei YC, Niu ZY, Wei W, Feng XJ, Ding S, Ng SW, Shen PP, Tan RX (2014) Diaporine, a novel endophyte-derived regulator of macrophage differentiation. Org Biomol Chem 12:6545–6548Google Scholar
  118. Zhang GW, Ma XQ, Su JY, Zhang K, Kurihara H, Yao XS (2006) Two new bioactive sesquiterpenes from the soft coral Sinularia sp. Nat Prod Res 20(7):659–664Google Scholar
  119. Zhao F, Liu YB, Ma SG, Qu J, Yu SS, Li F, Si YK, Zhang JJ (2012) New sesquiterpenes from the roots of Coriaria nepalensis. Tetrahedron 68(31):6204–6210Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vera Vil
    • 1
  • Tatyana A. Gloriozova
    • 2
  • Vladimir V. Poroikov
    • 2
  • Alexander O. Terent’ev
    • 1
  • Nick Savidov
    • 3
  • Valery M. Dembitsky
    • 1
    • 3
    • 4
    Email author
  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biomedical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Centre for Applied Research and InnovationLethbridge CollegeLethbridgeCanada
  4. 4.National Scientific Center of Marine BiologyVladivostokRussia

Personalised recommendations