Generation, identification, and functional analysis of monoclonal antibodies against porcine epidemic diarrhea virus nucleocapsid

  • Wenting Yang
  • Wenwen Chen
  • Jingling Huang
  • Li Jin
  • Yawei Zhou
  • Jianing Chen
  • Na Zhang
  • Donglai Wu
  • Encheng SunEmail author
  • Guangliang LiuEmail author
Biotechnological products and process engineering


The variant strains of porcine epidemic diarrhea virus (PEDV) severely threaten the pig industry worldwide and cause up to 100% mortality in suckling piglets. It is critically important and urgent to develop tools for detection of PEDV infection. In this study, we developed six monoclonal antibodies (mAbs) targeting N protein of PEDV and analyzed their applications on enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), western blot assay, and flow cytometry assay. The results demonstrated that all these six mAbs were IgG1 isotype and κ chain. Among these six mAbs, 3F12 recognizes a linear epitope (VAAVKDALKSLGI) while the other five mAbs recognize different conformational epitopes formed by a specific peptide fragment or the full length of N protein. The functional analysis showed that all these six mAbs were applicable to ELISA, western blot, IFA, and flow cytometry assay. In conclusion, we developed six mAbs against PEDV-N protein to facilitate the early detection of PEDV infection using ELISA, western blot, IFA, and flow cytometry.


Porcine epidemic diarrhea virus Monoclonal antibodies Nucleocapsid protein 


Funding information

This work was supported by the National Key R&D Program of China (2016YFD0500103), the National Natural Science Foundation of China (31572498, 31702209), and the Elite Youth Program of CAAS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All the mouse experimental procedures were approved by the Lanzhou Veterinary Research Institute experimental animal committee. All applicable international, national, and institutional guidelines for the care and use of animals were strictly followed.

Supplementary material

253_2019_9702_MOESM1_ESM.pdf (872 kb)
ESM 1 (PDF 872 kb)


  1. Alvarez J, Goede D, Morrison R, Perez A (2016) Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States. Prev Vet Med 123:155–160. CrossRefPubMedGoogle Scholar
  2. Beam A, Goede D, Fox A, McCool MJ, Wall G, Haley C, Morrison R (2015) A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread. PLoS One 10(12):e0144818. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chasey D, Cartwright SF (1978) Virus-like particles associated with porcine epidemic diarrhoea. Res Vet Sci 25(2):255–256. CrossRefPubMedGoogle Scholar
  4. Ding Z, Fang L, Jing H, Zeng S, Wang D, Liu L, Zhang H, Luo R, Chen H, Xiao S (2014) Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J Virol 88(16):8936–8945. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Egberink HF, Ederveen J, Callebaut P, Horzinek MC (1988) Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. Am J Vet Res 49(8):1320–1324PubMedGoogle Scholar
  6. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77(2):305–319. CrossRefPubMedGoogle Scholar
  7. Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G (2001) The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol 75(1):506–512. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng XJ (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4(5):e00737–e00713. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kocherhans R, Bridgen A, Ackermann M, Tobler K (2001) Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23(2):137–144. CrossRefPubMedGoogle Scholar
  10. Li C, Li W, Lucio de Esesarte E, Guo H, van den Elzen P, Aarts E, van den Born E, Rottier PJM, Bosch BJ (2017) Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies. J Virol 91(12).
  11. Li W, Li H, Liu Y, Pan Y, Deng F, Song Y, Tang X, He Q (2012) New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis 18(8):1350–1353. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li Y, Wu Q, Huang L, Yuan C, Wang J, Yang Q (2018) An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. 9(1):3811 doi:
  13. Li YH, Li J, Liu XE, Wang L, Li T, Zhou YH, Zhuang H (2005) Detection of the nucleocapsid protein of severe acute respiratory syndrome coronavirus in serum: comparison with results of other viral markers. J Virol Methods 130(1–2):45–50. CrossRefPubMedGoogle Scholar
  14. Li Z, Chen F, Yuan Y, Zeng X, Wei Z, Zhu L, Sun B, Xie Q, Cao Y, Xue C, Ma J, Bee Y (2013) Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China. Arch Virol 158(6):1267–1273. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lin CM, Gao X, Oka T, Vlasova AN, Esseili MA, Wang Q, Saif LJ (2015) Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. J Virol 89(6):3332–3342. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Liu J, Shi H, Chen J, Zhang X, Ji Z, Yuan J, Shi D, Cao L, Zhu X, Dong H, Wang X, Zhang J, Feng L (2017) Neutralization of genotype 2 porcine epidemic diarrhea virus strains by a novel monoclonal antibody. Virology 507:257–262. CrossRefPubMedGoogle Scholar
  17. Okda FA, Lawson S, Singrey A, Nelson J, Hain KS, Joshi LR, Christopher-Hennings J, Nelson EA, Diel DG (2017) The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes. Virology 509:185–194. CrossRefPubMedGoogle Scholar
  18. Saif LJ (1993) Coronavirus immunogens. Vet Microbiol 37(3–4):285–297. CrossRefPubMedGoogle Scholar
  19. Shi D, Lv M, Chen J, Shi H, Zhang S, Zhang X, Feng L (2014) Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses 6(3):1253–1273. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Song D, Huang D, Peng Q, Huang T, Chen Y, Zhang T, Nie X, He H, Wang P, Liu Q, Tang Y (2015) Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PLoS One 10(3):e0120310. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Song D, Park B (2012) Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44(2):167–175. CrossRefPubMedGoogle Scholar
  22. Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, Cooper VL, Pillatzki A, Gauger P, Schmitt BJ, Koster LG, Killian ML, Yoon KJ (2013) Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Investig 25(5):649–654. CrossRefGoogle Scholar
  23. Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX (2012) Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 18(1):161–163. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Totura AL, Baric RS (2012) SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2(3):264–275. CrossRefPubMedGoogle Scholar
  25. Wang D, Fang L, Xiao S (2016) Porcine epidemic diarrhea in China. Virus Res 226:7–13. CrossRefPubMedGoogle Scholar
  26. Xie W, Ao C, Yang Y, Liu Y, Liang R, Zeng Z, Ye G, Xiao S, Fu ZF, Dong W, Peng G (2019) Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus. J Gen Virol 100(2):206–216. CrossRefPubMedGoogle Scholar
  27. Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4(12):951–961. CrossRefPubMedPubMedCentralGoogle Scholar
  28. You J, Dove BK, Enjuanes L, DeDiego ML, Alvarez E, Howell G, Heinen P, Zambon M, Hiscox JA (2005) Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J Gen Virol 86(Pt 12):3303–3310. CrossRefPubMedGoogle Scholar
  29. Zhang Q, Hu R, Tang X, Wu C, He Q, Zhao Z, Chen H, Wu B (2013) Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch Virol 158(8):1631–1636. CrossRefPubMedGoogle Scholar
  30. Zhao ZP, Yang Z, Lin WD, Wang WY, Yang J, Jin WJ, Qin AJ (2016) The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus. Acta Virol 60(1):55–61. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Veterinary Etiological BiologyLanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhouChina
  2. 2.State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbinChina

Personalised recommendations