Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 7, pp 2947–2958 | Cite as

Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications

  • Xing Jin
  • Oh-Jin Park
  • Seok Hoon HongEmail author
Mini-Review

Abstract

The natural genetic code only allows for 20 standard amino acids in protein translation, but genetic code reprogramming enables the incorporation of non-standard amino acids (NSAAs). Proteins containing NSAAs provide enhanced or novel properties and open diverse applications. With increased attention to the recent advancements in synthetic biology, various improved and novel methods have been developed to incorporate single and multiple distinct NSAAs into proteins. However, various challenges remain in regard to NSAA incorporation, such as low yield and misincorporation. In this review, we summarize the recent efforts to improve NSAA incorporation by utilizing orthogonal translational system optimization, cell-free protein synthesis, genomically recoded organisms, artificial codon boxes, quadruplet codons, and orthogonal ribosomes, before closing with a discussion of the emerging applications of NSAA incorporation.

Keywords

Non-standard amino acids Genetic code expansion Synthetic biology Orthogonal translational system 

Notes

Funding

This study was funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R15AI130988).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Acevedo-Rocha CG, Hoesl MG, Nehring S, Royter M, Wolschner C, Wiltschi B, Antranikian G, Budisa N (2013) Non-canonical amino acids as a useful synthetic biological tool for lipase-catalysed reactions in hostile environments. Catal Sci Technol 3:1198–1201.  https://doi.org/10.1039/c3cy20712a Google Scholar
  2. Agostini F, Völler J-S, Koksch B, Acevedo-Rocha CG, Kubyshkin V, Budisa N (2017) Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew Chem Int Ed 56:9680–9703.  https://doi.org/10.1002/anie.201610129 Google Scholar
  3. Albayrak C, Swartz JR (2013) Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Res 41:5949–5963.  https://doi.org/10.1093/nar/gkt226 Google Scholar
  4. Albayrak C, Swartz JR (2014) Direct polymerization of proteins. ACS Synth Biol 3:353–362.  https://doi.org/10.1021/sb400116x Google Scholar
  5. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158.  https://doi.org/10.3389/fmicb.2011.00158 Google Scholar
  6. Amiram M, Haimovich AD, Fan C, Wang Y-S, Aerni H-R, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Söll D, Rinehart J, Isaacs FJ (2015) Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33:1272–1279.  https://doi.org/10.1038/nbt.3372 Google Scholar
  7. Ayyadurai N, Saravanan Prabhu N, Deepankumar K, Lee S-G, Jeong H-H, Lee C-S, Yun H (2011) Development of a selective, sensitive, and reversible biosensor by the genetic incorporation of a metal-binding site into green fluorescent protein. Angew Chem Int Ed 50:6534–6537.  https://doi.org/10.1002/anie.201008289 Google Scholar
  8. Badenhorst CPS, Bornscheuer UT (2018) Getting momentum: from biocatalysis to advanced synthetic biology. Trends Biochem Sci 43:180–198.  https://doi.org/10.1016/J.TIBS.2018.01.003 Google Scholar
  9. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575.  https://doi.org/10.3390/ph6121543 Google Scholar
  10. Banin E, Hughes D, Kuipers OP (2017) Editorial: bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol Rev 41:450–452.  https://doi.org/10.1093/femsre/fux016 Google Scholar
  11. Baumann T, Nickling JH, Bartholomae M, Buivydas A, Kuipers OP, Budisa N (2017) Prospects of in vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Front Microbiol 8:124.  https://doi.org/10.3389/fmicb.2017.00124 Google Scholar
  12. Baumann T, Schmitt F-J, Pelzer A, Spiering VJ, Freiherr Von Sass GJ, Friedrich T, Budisa N, Baumann C, Schmitt T, Spiering A, Von Sass F, Friedrich GJ (2018) Engineering “golden” fluorescence by selective pressure incorporation of non-canonical amino acids and protein analysis by mass spectrometry and fluorescence. J Vis Exp 134:57017.  https://doi.org/10.3791/57017 Google Scholar
  13. Bryson D, Fan C, Guo L, Miller C, Söll D, Liu D (2017) Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol 13:1253–1260.  https://doi.org/10.1038/nchembio.2474Google Scholar
  14. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107.  https://doi.org/10.1038/nbt1044 Google Scholar
  15. Chatterjee A, Xiao H, Schultz PG (2012) Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 109:14841–14846.  https://doi.org/10.1073/pnas.1212454109 Google Scholar
  16. Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52:1828–1837.  https://doi.org/10.1021/bi4000244 Google Scholar
  17. Chen Z, Ren W, Wright QE, Ai H (2013) Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J Am Chem Soc 135:14940–14943.  https://doi.org/10.1021/ja408011q Google Scholar
  18. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408.  https://doi.org/10.1146/annurev-biochem-060713-035737 Google Scholar
  19. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60.  https://doi.org/10.1038/nature24031 Google Scholar
  20. d’Aquino AE, Kim DS, Jewett MC (2018) Engineered ribosomes for basic science and synthetic biology. Annu Rev Chem Biomol Eng 9:311–340.  https://doi.org/10.1146/annurev-chembioeng-060817-084129 Google Scholar
  21. Devaraj NK (2018) The future of bioorthogonal chemistry. ACS Cent Sci 4:952–959.  https://doi.org/10.1021/acscentsci.8b00251 Google Scholar
  22. Dien VT, Morris SE, Karadeema RJ, Romesberg FE (2018) Expansion of the genetic code via expansion of the genetic alphabet. Curr Opin Chem Biol 46:196–202.  https://doi.org/10.1016/J.CBPA.2018.08.009 Google Scholar
  23. Dulic M, Cvetesic N, Zivkovic I, Palencia A, Cusack S, Bertosa B, Gruic-Sovulj I (2018) Kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase. J Mol Biol 430:1–16.  https://doi.org/10.1016/J.JMB.2017.10.024 Google Scholar
  24. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment – expanding the chemistry in biology. Chem Sci 6:50–69.  https://doi.org/10.1039/C4SC01534G Google Scholar
  25. Fechter P, Rudinger J, Giegé R, Théobald-Dietrich A (1998) Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett 436:99–103.  https://doi.org/10.1016/S0014-5793(98)01096-5 Google Scholar
  26. Forster AC, Tan Z, Nalam MNL, Lin H, Qu H, Cornish VW, Blacklow SC (2003) Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc Natl Acad Sci U S A 100:6353–6357.  https://doi.org/10.1073/pnas.1132122100 Google Scholar
  27. Gan R, Perez JG, Carlson ED, Ntai I, Isaacs FJ, Kelleher NL, Jewett MC (2017) Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins. Biotechnol Bioeng 114:1074–1086.  https://doi.org/10.1002/bit.26239 Google Scholar
  28. Gan F, Liu R, Wang F, Schultz PG (2018) Functional replacement of histidine in proteins to generate noncanonical amino acid dependent organisms. J Am Chem Soc 140:3829–3832.  https://doi.org/10.1021/jacs.7b13452 Google Scholar
  29. Gerrits M, Budisa N, Merk H (2019) Site-specific chemoselective pyrrolysine analogues incorporation using the cell-free protein synthesis system. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.8b00421
  30. Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:1–33.  https://doi.org/10.2478/s11535-007-0010-5 Google Scholar
  31. Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC (2018) Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 36:415–429.  https://doi.org/10.1016/J.BIOTECHADV.2018.01.004 Google Scholar
  32. Green AP, Hayashi T, Mittl PRE, Hilvert D (2016) A chemically programmed proximal ligand enhances the catalytic properties of a heme enzyme. J Am Chem Soc 138:11344–11352.  https://doi.org/10.1021/jacs.6b07029 Google Scholar
  33. Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N (2017) Photoactivatable mussel-based underwater adhesive proteins by an expanded genetic code. ChemBioChem 18:1819–1823.  https://doi.org/10.1002/cbic.201700327 Google Scholar
  34. Hetrick KJ, Walker MC, Van Der Donk WA (2018) Development and application of yeast and phage display of diverse lanthipeptides. ACS Cent Sci 4:458–467.  https://doi.org/10.1021/acscentsci.7b00581 Google Scholar
  35. Hoesl MG, Oehm S, Durkin P, Darmon E, Peil L, Aerni H-R, Rappsilber J, Rinehart J, Leach D, Söll D, Budisa N (2015) Chemical evolution of a bacterial proteome. Angew Chem Int Ed 54:10030–10034.  https://doi.org/10.1002/anie.201502868 Google Scholar
  36. Hong SH, Kwon Y-C, Jewett MC (2014a) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:34.  https://doi.org/10.3389/fchem.2014.00034 Google Scholar
  37. Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC (2014b) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific non-standard amino acid incorporation. ACS Synth Biol 3:398–409.  https://doi.org/10.1021/sb400140t Google Scholar
  38. Hong SH, Kwon Y-C, Martin RW, Des Soye BJ, de Paz AM, Swonger KN, Ntai I, Kelleher NL, Jewett MC (2015) Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1. ChemBioChem 16:844–853.  https://doi.org/10.1002/cbic.201402708 Google Scholar
  39. Huang Y, Liu T (2018) Therapeutic applications of genetic code expansion. Synth Syst Biotechnol 3:150–158.  https://doi.org/10.1016/j.synbio.2018.09.003 Google Scholar
  40. Hudson GA, Mitchell DA (2018) RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 45:61–69.  https://doi.org/10.1016/J.MIB.2018.02.010 Google Scholar
  41. Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–471.  https://doi.org/10.1016/j.tcb.2014.04.002 Google Scholar
  42. Iwane Y, Hitomi A, Murakami H, Katoh T, Goto Y, Suga H (2016) Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nat Chem 8:317–325.  https://doi.org/10.1038/nchem.2446 Google Scholar
  43. Jin X, Hong SH (2018) Cell-free protein synthesis for producing ‘difficult-to-express’ proteins. Biochem Eng J 138:156–164.  https://doi.org/10.1016/j.bej.2018.07.013 Google Scholar
  44. Jin X, Kightlinger W, Kwon Y-C, Hong SH (2018) Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth Biol 3:ysy004.  https://doi.org/10.1093/synbio/ysy004 Google Scholar
  45. Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7:779–786.  https://doi.org/10.1038/nchembio.657 Google Scholar
  46. Kageyama M, Kobayashi M, Sano Y, Masaki H (1996) Construction and characterization of pyocin-colicin chimeric proteins. J Bacteriol 178:103–110. ​ https://doi.org/10.1128/jb.178.1.103-110.1996 Google Scholar
  47. Kakkar N, Perez JG, Liu WR, Jewett MC, van der Donk WA (2018) Incorporation of nonproteinogenic amino acids in class I and II lantibiotics. ACS Chem Biol 13:951–957.  https://doi.org/10.1021/acschembio.7b01024 Google Scholar
  48. Kang M, Lu Y, Chen S, Tian F (2018) Harnessing the power of an expanded genetic code toward next-generation biopharmaceuticals. Curr Opin Chem Biol 46:123–129.  https://doi.org/10.1016/j.cbpa.2018.07.018 Google Scholar
  49. Kato Y (2015) An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system. PeerJ 3:e1247.  https://doi.org/10.7717/peerj.1247 Google Scholar
  50. Katoh T, Passioura T, Suga H (2018) Advances in in vitro genetic code reprogramming in 2014–2017. Synth Biol 3:ysy008.  https://doi.org/10.1093/synbio/ysy008 Google Scholar
  51. Kers JA, DeFusco AW, Park JH, Xu J, Pulse ME, Weiss WJ, Handfield M (2018) OG716: designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS One 13:e0197467.  https://doi.org/10.1371/journal.pone.0197467 Google Scholar
  52. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD (2017) The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45:D543–D550.  https://doi.org/10.1093/nar/gkw1003 Google Scholar
  53. Kim CH, Axup JY, Schultz PG (2013) Protein conjugation with genetically encoded unnatural amino acids. Curr Opin Chem Biol 17:412–419.  https://doi.org/10.1016/j.cbpa.2013.04.017 Google Scholar
  54. Koh M, Nasertorabi F, Han GW, Stevens RC, Schultz PG (2017) Generation of an orthogonal protein–protein interface with a noncanonical amino acid. J Am Chem Soc 139:5728–5731.  https://doi.org/10.1021/jacs.7b02273 Google Scholar
  55. Kord Forooshani P, Lee BP (2017) Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem 55:9–33.  https://doi.org/10.1002/pola.28368 Google Scholar
  56. Krishnakumar R, Ling J (2014) Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion. FEBS Lett 588:383–388.  https://doi.org/10.1016/j.febslet.2013.11.039 Google Scholar
  57. Kubyshkin V, Budisa N (2017) Synthetic alienation of microbial organisms by using genetic code engineering: why and how? Biotechnol J 12:1600097.  https://doi.org/10.1002/biot.201600097 Google Scholar
  58. Kubyshkin V, Acevedo-Rocha CG, Budisa N (2018) On universal coding events in protein biogenesis. Biosystems 164:16–25.  https://doi.org/10.1016/J.BIOSYSTEMS.2017.10.004 Google Scholar
  59. Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342:357–360.  https://doi.org/10.1126/science.1241459 Google Scholar
  60. Lee EY, Wong GCL, Ferguson AL (2018) Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem 26:2708–2718.  https://doi.org/10.1016/J.BMC.2017.07.012 Google Scholar
  61. Li X, Liu CC (2014) Biological applications of expanded genetic codes. ChemBioChem 15:2335–2341.  https://doi.org/10.1002/cbic.201402159 Google Scholar
  62. Li JC, Liu T, Wang Y, Mehta AP, Schultz PG (2018) Enhancing protein stability with genetically encoded noncanonical amino acids. J Am Chem Soc 140:15997–16000.  https://doi.org/10.1021/jacs.8b07157 Google Scholar
  63. Link AJ, Tirrell DA (2005) Reassignment of sense codons in vivo. Methods 36:291–298.  https://doi.org/10.1016/j.ymeth.2005.04.005 Google Scholar
  64. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444.  https://doi.org/10.1146/annurev.biochem.052308.105824 Google Scholar
  65. Liu X, Jiang L, Li J, Wang L, Yu Y, Zhou Q, Lv X, Gong W, Lu Y, Wang J (2014) Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers. J Am Chem Soc 136:13094–13097.  https://doi.org/10.1021/ja505219r Google Scholar
  66. Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60. ​ https://doi.org/10.1038/nature14121 Google Scholar
  67. Martin RW, Des SBJ, Kwon Y-C, Kay J, Davis RG, Thomas PM, Majewska NI, Chen CX, Marcum RD, Weiss MG, Stoddart AE, Amiram M, Charna AKR, Patel JR, Isaacs FJ, Kelleher NL, Hong SH, Jewett MC (2018) Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 9:1203.  https://doi.org/10.1038/s41467-018-03469-5 Google Scholar
  68. Moe-Behrens GHG, Davis R, Haynes KA (2013) Preparing synthetic biology for the world. Front Microbiol 4:5.  https://doi.org/10.3389/fmicb.2013.00005 Google Scholar
  69. Mukai T, Yanagisawa T, Ohtake K, Wakamori M, Adachi J, Hino N, Sato A, Kobayashi T, Hayashi A, Shirouzu M, Umehara T, Yokoyama S, Sakamoto K (2011) Genetic-code evolution for protein synthesis with non-natural amino acids. Biochem Biophys Res Commun 411:757–761.  https://doi.org/10.1016/j.bbrc.2011.07.020 Google Scholar
  70. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444.  https://doi.org/10.1038/nature08817 Google Scholar
  71. Neumann-Staubitz P, Neumann H (2016) The use of unnatural amino acids to study and engineer protein function. Curr Opin Struct Biol 38:119–128.  https://doi.org/10.1016/j.sbi.2016.06.006 Google Scholar
  72. Nguyen T-A, Cigler M, Lang K (2018) Expanding the genetic code to study protein-protein interactions. Angew Chem Int Ed 57:14350–14361.  https://doi.org/10.1002/anie.201805869 Google Scholar
  73. Nickling JH, Baumann T, Schmitt F-J, Bartholomae M, Kuipers OP, Friedrich T, Budisa N (2018) Antimicrobial peptides produced by selective pressure incorporation of non-canonical amino acids. J Vis Exp 135:e57551.  https://doi.org/10.3791/57551 Google Scholar
  74. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188. ​ https://doi.org/10.1126/science.2649980 Google Scholar
  75. O’Donoghue P, Ling J, Wang Y-S, Söll D (2013) Upgrading protein synthesis for synthetic biology. Nat Chem Biol 9:594–598.  https://doi.org/10.1038/nchembio.1339 Google Scholar
  76. Ohtake K, Sato A, Mukai T, Hino N, Yokoyama S, Sakamoto K (2012) Efficient decoding of the UAG triplet as a full-fledged sense codon enhances the growth of a prfA-deficient strain of Escherichia coli. J Bacteriol 194:2606–2613.  https://doi.org/10.1128/jb.00195-12 Google Scholar
  77. Ohtsuki T, Manabe T, Sisido M (2005) Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures. FEBS Lett 579:6769–6774.  https://doi.org/10.1016/j.febslet.2005.11.010 Google Scholar
  78. Ongey EL, Yassi H, Pflugmacher S, Neubauer P (2017) Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett 39:473–482.  https://doi.org/10.1007/s10529-016-2279-9 Google Scholar
  79. Ongey EL, Pflugmacher S, Neubauer P (2018) Bioinspired designs, molecular premise and tools for evaluating the ecological importance of antimicrobial peptides. Pharmaceuticals 11:68.  https://doi.org/10.3390/ph11030068 Google Scholar
  80. Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS (2015) Protein synthesis by ribosomes with tethered subunits. Nature 524:119–124.  https://doi.org/10.1038/nature14862 Google Scholar
  81. Park H-S, Hohn MJ, Umehara T, Guo L-T, Osborne EM, Benner J, Noren CJ, Rinehart J, Söll D (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154.  https://doi.org/10.1126/science.1207203 Google Scholar
  82. Peciak K, Laurine E, Tommasi R, Choi J, Brocchini S (2019) Site-selective protein conjugation at histidine. Chem Sci 10:427–439.  https://doi.org/10.1039/C8SC03355B Google Scholar
  83. Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:e1001067.  https://doi.org/10.1371/journal.ppat.1001067 Google Scholar
  84. Porto WF, Pires AS, Franco OL (2017) Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol Adv 35:337–349.  https://doi.org/10.1016/J.BIOTECHADV.2017.02.001 Google Scholar
  85. Praveschotinunt P, Courchesne NMD, den Hartog I, Lu C, Kim JJ, Nguyen PQ, Joshi NS (2018) Tracking of engineered bacteria in vivo using nonstandard amino acid incorporation. ACS Synth Biol 7:1640–1650.  https://doi.org/10.1021/acssynbio.8b00135 Google Scholar
  86. Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S (2015) Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 589:1703–1712.  https://doi.org/10.1016/j.febslet.2015.04.041 Google Scholar
  87. Ravikumar Y, Nadarajan SP, Yoo TH, Lee C, Yun H (2015) Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol 33:462–470.  https://doi.org/10.1016/j.tibtech.2015.05.002 Google Scholar
  88. Reitz C, Fan Q, Neubauer P (2018) Synthesis of non-canonical branched-chain amino acids in Escherichia coli and approaches to avoid their incorporation into recombinant proteins. Curr Opin Biotechnol 53:248–253.  https://doi.org/10.1016/J.COPBIO.2018.05.003 Google Scholar
  89. Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93. ​ https://doi.org/10.1038/nature14095 Google Scholar
  90. Schinn S-M, Bradley W, Groesbeck A, Wu JC, Broadbent A, Bundy BC (2017) Rapid in vitro screening for the location-dependent effects of unnatural amino acids on protein expression and activity. Biotechnol Bioeng 114:2412–2417.  https://doi.org/10.1002/bit.26305 Google Scholar
  91. Serfling R, Seidel L, Böttke T, Coin I (2018) Optimizing the genetic incorporation of chemical probes into GPCRs for photo-crosslinking mapping and bioorthogonal chemistry in live mammalian cells. J Vis Exp (134):e57069.  https://doi.org/10.3791/57069
  92. Shang X, Chen Y, Wang N, Niu W, Guo J (2018) Oxidation-induced generation of a mild electrophile for proximity-enhanced protein–protein crosslinking. Chem Commun 54:4172–4175.  https://doi.org/10.1039/C8CC01639A Google Scholar
  93. Shcherbakova DM, Subach OM, Verkhusha VV (2012) Red fluorescent proteins: advanced imaging applications and future design. Angew Chem Int Ed 51:10724–10738.  https://doi.org/10.1002/anie.201200408 Google Scholar
  94. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75.  https://doi.org/10.1097/MOG.0000000000000139 Google Scholar
  95. Smith MT, Hawes AK, Shrestha P, Rainsdon JM, Wu JC, Bundy BC (2014) Alternative fermentation conditions for improved Escherichia coli-based cell-free protein synthesis for proteins requiring supplemental components for proper synthesis. Process Biochem 49:217–222.  https://doi.org/10.1016/j.procbio.2013.10.012 Google Scholar
  96. Spicer CD, Jumeaux C, Gupta B, Stevens MM (2018) Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 47:3574–3620.  https://doi.org/10.1039/C7CS00877E Google Scholar
  97. Swartz JR, Jewett MC, Woodrow KA (2004) Cell-free protein synthesis with prokaryotic combined transcription-translation. Methods Mol Biol 267:169–182.  https://doi.org/10.1385/1-59259-774-2:169 Google Scholar
  98. Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, DeGuzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, DiJoseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber H-P, Sapra P (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111:1766–1771.  https://doi.org/10.1073/pnas.1321237111 Google Scholar
  99. Uhlenbeck OC, Schrader JM (2018) Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes. Curr Opin Chem Biol 46:138–145.  https://doi.org/10.1016/j.cbpa.2018.07.016 Google Scholar
  100. Vargas-Rodriguez O, Sevostyanova A, Söll D, Crnković A (2018) Upgrading aminoacyl-tRNA synthetases for genetic code expansion. Curr Opin Chem Biol 46:115–122.  https://doi.org/10.1016/J.CBPA.2018.07.014 Google Scholar
  101. Voloshchuk N, Montclare JK (2010) Incorporation of unnatural amino acids for synthetic biology. Mol BioSyst 6:65–80. https://doi.org/10.1039/B909200P
  102. Wang L (2017a) Engineering the genetic code in cells and animals: biological considerations and impacts. Acc Chem Res 50:2767–2775.  https://doi.org/10.1021/acs.accounts.7b00376
  103. Wang L (2017b) Genetically encoding new bioreactivity. New Biotechnol 38:16–25.  https://doi.org/10.1016/j.nbt.2016.10.003
  104. Wang L, Xie J, Deniz AA, Schultz PG (2003) Unnatural amino acid mutagenesis of green fluorescent protein. J Organomet Chem 68:174–176.  https://doi.org/10.1021/JO026570U
  105. Wang K, Neumann H, Peak-Chew SY, Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25:770–777.  https://doi.org/10.1038/nbt1314 Google Scholar
  106. Wang N, Yang B, Fu C, Zhu H, Zheng F, Kobayashi T, Liu J, Li S, Ma C, Wang PG, Wang Q, Wang L (2018) Genetically encoding fluorosulfate-L-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J Am Chem Soc 140:4995–4999.  https://doi.org/10.1021/jacs.8b01087 Google Scholar
  107. Xiao H, Nasertorabi F, Choi S, Han GW, Reed SA, Stevens RC, Schultz PG (2015) Exploring the potential impact of an expanded genetic code on protein function. Proc Natl Acad Sci U S A 112:6961–6966.  https://doi.org/10.1073/pnas.1507741112 Google Scholar
  108. Xuan W, Yao A, Schultz PG (2017) Genetically encoded fluorescent probe for detecting sirtuins in living cells. J Am Chem Soc 139:12350–12353.  https://doi.org/10.1021/jacs.7b05725 Google Scholar
  109. Yang B, Tang S, Ma C, Li S-T, Shao G-C, Dang B, DeGrado WF, Dong M-Q, Wang PG, Ding S, Wang L (2017) Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 8:2240.  https://doi.org/10.1038/s41467-017-02409-z Google Scholar
  110. Yang B, Wu H, Schnier PD, Liu Y, Liu J, Wang N, DeGrado WF, Wang L (2018) Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc Natl Acad Sci U S A 115:11162–11167.  https://doi.org/10.1073/PNAS.1813574115 Google Scholar
  111. Yoshida M, Hinkley T, Tsuda S, Abul-Haija YM, McBurney RT, Kulikov V, Mathieson JS, Galiñanes Reyes S, Castro MD, Cronin L (2018) Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4:533–543.  https://doi.org/10.1016/J.CHEMPR.2018.01.005 Google Scholar
  112. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285:11039–11044.  https://doi.org/10.1074/jbc.R109.091306 Google Scholar
  113. Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374.  https://doi.org/10.1016/j.jmb.2009.10.030 Google Scholar
  114. Zambaldo C, Luo X, Mehta AP, Schultz PG (2017) Recombinant macrocyclic lanthipeptides incorporating non-canonical amino acids. J Am Chem Soc 139:11646–11649.  https://doi.org/10.1021/jacs.7b04159 Google Scholar
  115. Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, Feldman AW, Turner CR, Romesberg FE (2017) A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551:644–647.  https://doi.org/10.1038/nature24659 Google Scholar
  116. Zheng Y, Gilgenast MJ, Hauc S, Chatterjee A (2018) Capturing post-translational modification-triggered protein–protein interactions using dual noncanonical amino acid mutagenesis. ACS Chem Biol 13:1137–1141.  https://doi.org/10.1021/acschembio.8b00021 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringIllinois Institute of TechnologyChicagoUSA
  2. 2.Department of Biological and Chemical EngineeringYanbian University of Science and TechnologyYanjiPeople’s Republic of China

Personalised recommendations