Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3297–3316 | Cite as

Heavy metal resistance in algae and its application for metal nanoparticle synthesis

  • Eepsita Priyadarshini
  • Sushree Sangita Priyadarshini
  • Nilotpala PradhanEmail author
Mini-Review
  • 530 Downloads

Abstract

The ungenerous release of metals from different industrial, agricultural, and anthropogenic sources has resulted in heavy metal pollution. Metals with a density larger than 5 g cm−3 have been termed as heavy metals and have been stated to be potentially toxic to human and animals. Algae are known to be pioneer organisms with the potential to grow under extreme conditions including heavy metal-polluted sites. They have evolved efficient defense strategies to combat the toxic effects exerted by heavy metal ions. Most of the algal strains are reported to accumulate elevated metal ion concentration in cellular organelles. With respect to that, this review focuses on understanding the various strategies used by algal system for heavy metal resistance. Additionally, the application of this metal resistance in biosynthesis of metal nanoparticles and metal oxide nanoparticles has been investigated in details. We thereby conclude that algae serve as an excellent system for understanding metal uptake and accumulation. This thereby assists in the design and development of low-cost approaches for large-scale synthesis of nanoparticles and bioremediation approach, providing ample opportunities for future work.

Keywords

Algae Microalgae Macroalgae Heavy metal resistance Biosorption Bioaccumulation Metal efflux Metal nanoparticles 

Notes

Acknowledgments

All authors are thankful to Director CSIR-IMMT, Bhubaneswar, for the permission to publish this article. NP would like to thank the DST (DST-UKIERI Award No. DST/INT/UK/P-128/2016) for the financial support. EP is thankful to DST-SERB, Govt. of India, for the fellowship under the National Postdoctoral (NPDF) Scheme (Grant Number PDF/2017/000024). SSP would like thank to the Council of Scientific and Industrial Research, Govt. of India, for the fellowship under the CSIR-JRF Scheme (Grant Number 20/12/2015 (ii) EU-V).

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576.  https://doi.org/10.1007/s13204-013-0233-x CrossRefGoogle Scholar
  2. Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79Google Scholar
  3. Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294.  https://doi.org/10.1016/S1383-5866(00)00212-4 CrossRefGoogle Scholar
  4. Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper by C. vulgaris and Z. ramigera. Environ Technol 13(6):579–586.  https://doi.org/10.1080/09593339209385186 CrossRefGoogle Scholar
  5. Ali D, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390Google Scholar
  6. Alloway BJ (1995) Soil processes and the behavior of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic & Professional, London, pp 38–57CrossRefGoogle Scholar
  7. Arsiya F, Sayadi MH, Sobhani S (2016) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115.  https://doi.org/10.1016/j.matlet.2016.09.101 CrossRefGoogle Scholar
  8. Arsiya F, Sayadi MH, Sobhani S (2017) Arsenic (III) adsorption using palladium nanoparticles from aqueous solution. J Water Environ Nanotechnol 2:166–173.  https://doi.org/10.22090/jwent.2017.03.004 CrossRefGoogle Scholar
  9. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad M (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  10. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277.  https://doi.org/10.1016/j.matlet.2013.11.038 CrossRefGoogle Scholar
  11. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91.  https://doi.org/10.1016/S0141-0229(02)00245-4 CrossRefGoogle Scholar
  12. Barwal I, Ranjan P, Kateriya S, Yadav S (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:1–56.  https://doi.org/10.1186/1477-3155-9-56 CrossRefGoogle Scholar
  13. Basta NT, Ryan JA, Chaney RL (2004) Trace element chemistry in residual-treated soil key concepts and metal bioavailability. J Environ Qual 34:49–63CrossRefGoogle Scholar
  14. Bayramoǧlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium (II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43.  https://doi.org/10.1016/j.minpro.2006.06.002 CrossRefGoogle Scholar
  15. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181.  https://doi.org/10.1111/j.1574-6968.2005.00044.x CrossRefPubMedGoogle Scholar
  16. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chem Eng Technol 32:1036–1041.  https://doi.org/10.1002/ceat.200800647 CrossRefGoogle Scholar
  17. Blanco A, Sampedro MA, Sanz B, Llama MJ, Serra L (2000) Immobilization of non-viable cyanobacteria and their use for heavy metal adsorption from water. In: Environmetal biotechnology and cleaner processes. p 135Google Scholar
  18. Bong CW, Alfatti FM, Zam FA, Obayashi Y, Suzuki S (2010) The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. Interdiscip Stud Environ Chem Response Contam 3:57–63Google Scholar
  19. Brayner R, Coradin T, Beaunier P, Grenèche JM, Djediat C, Yéprémian C, Couté A, Fiévet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids Surf B Biointerfaces 93:20–23.  https://doi.org/10.1016/j.colsurfb.2011.10.014 CrossRefPubMedGoogle Scholar
  20. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207.  https://doi.org/10.1006/eesa.1999.1860 CrossRefPubMedGoogle Scholar
  21. Cánovas D, Vooijs R, Schat H, De Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240.  https://doi.org/10.1074/jbc.M408622200 CrossRefPubMedGoogle Scholar
  22. Chetia L, Kalita D, Ahmed GA (2017) Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens Bio-Sensing Res 16:55–61.  https://doi.org/10.1016/j.sbsr.2017.11.004 CrossRefGoogle Scholar
  23. Chmielewska E, Medved J (2001) Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat Chem Acta 74(1):135–145Google Scholar
  24. Choi SB, Yun YS (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater 138:378–383.  https://doi.org/10.1016/j.jhazmat.2006.05.059 CrossRefPubMedGoogle Scholar
  25. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothionein: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182.  https://doi.org/10.1146/annurev.arplant.53.100301.135154 CrossRefPubMedGoogle Scholar
  26. Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288.  https://doi.org/10.1002/bit.23276 CrossRefPubMedGoogle Scholar
  27. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:1–12.  https://doi.org/10.1007/s11051-014-2607-8 CrossRefGoogle Scholar
  28. Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346.  https://doi.org/10.1021/cr030698+ CrossRefPubMedGoogle Scholar
  29. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169.  https://doi.org/10.1016/j.is.2009.02.003 CrossRefGoogle Scholar
  30. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278.  https://doi.org/10.1016/S0043-1354(00)00177-9 CrossRefGoogle Scholar
  31. De Carvalho RP, Chong KH, Volesky B (1995) Evaluation of the Cd, Cu, and Zn biosorption in two metal systems using an algal biosorbent. Biotechnol Prog 11:39–44.  https://doi.org/10.1021/bp00031a005 CrossRefGoogle Scholar
  32. Dönmez GC, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892.  https://doi.org/10.1016/S0032-9592(99)00005-9 CrossRefGoogle Scholar
  33. Duffus JH (2002) “Heavy metals”—a meaningless term? Pure Appl Chem 74:793–807.  https://doi.org/10.1351/pac200274050793 CrossRefGoogle Scholar
  34. Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Dave R, Tripathi P, Charkrabarty D, Trivedi PK (2010) Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173:95–101.  https://doi.org/10.1016/j.jhazmat.2009.08.053 CrossRefPubMedGoogle Scholar
  35. Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker Publisher, New YorkGoogle Scholar
  36. Folgar S, Torres E, Pérez-Rama M, Cid A, Herrero C, Abalde J (2009) Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J Hazard Mater 165:486–493.  https://doi.org/10.1016/j.jhazmat.2008.10.010 CrossRefPubMedGoogle Scholar
  37. Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282.  https://doi.org/10.1021/es950315s CrossRefGoogle Scholar
  38. Fourest E, Volesky B (1997) Alginate properties and heavy metal biosorption by marine algae. Appl Biochem Biotechnol 67:215–226.  https://doi.org/10.1007/s13596-015-0215-5 CrossRefGoogle Scholar
  39. Gadd GM (1994) Interactions of fungi with toxic metals. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus. Federation of European Microbiological Societies Symposium Series, vol 69. Springer, BostonGoogle Scholar
  40. Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria Japonica. J Nanoelectron Optoelectron 6:268–271.  https://doi.org/10.1166/jno.2011.1166 CrossRefGoogle Scholar
  41. González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surfaces B Biointerfaces 153:190–198.  https://doi.org/10.1016/j.colsurfb.2017.02.020 CrossRefPubMedGoogle Scholar
  42. Gu H, Chen X, Chen F, Zhou X, Parsaee Z (2018) Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem 41:109–119.  https://doi.org/10.1016/j.ultsonch.2017.09.006 CrossRefPubMedGoogle Scholar
  43. Gupta VK, Rastogi A (2008) Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids Surf B Biointerfaces 64:170–178.  https://doi.org/10.1016/j.colsurfb.2008.01.019 CrossRefPubMedGoogle Scholar
  44. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467.  https://doi.org/10.1002/jobm.200700275 CrossRefPubMedGoogle Scholar
  45. Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11.  https://doi.org/10.1093/jexbot/53.366.1 CrossRefPubMedGoogle Scholar
  46. Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009.  https://doi.org/10.1002/bit.260431102 CrossRefPubMedGoogle Scholar
  47. Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825CrossRefGoogle Scholar
  48. Howe G, Merchant S (1992) Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol 98:127–136.  https://doi.org/10.1104/pp.98.1.127 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ismail AM, Ali HSJ, Parthasarathy M (2018) Biosynthesis of gold nanoparticles using Sargassum myriocystum and evaluation of their antibacterial activity. Int J Pure App Biosci 6:1340–1350.  https://doi.org/10.18782/2320-7051.6291 CrossRefGoogle Scholar
  50. Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. 3:1–8Google Scholar
  51. Jena J, Pradhan N, Aishvarya V, Nayak RR (2014a) Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24. J Appl Phycol 6:2251–2260.  https://doi.org/10.1007/s10811-014-0499-8 CrossRefGoogle Scholar
  52. Jena J, Pradhan N, Nayak R, Dash BP, Sukla LB, Panda PK, Mishra BK (2014b) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533.  https://doi.org/10.4014/jmb.1306.06014 CrossRefPubMedGoogle Scholar
  53. Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 6:661–666.  https://doi.org/10.1016/j.jscs.2014.06.005 CrossRefGoogle Scholar
  54. Kaliamurthi S, Selvaraj G, Çakmak ZE, Çakmak T (2016) Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). Phycologia 55:568–576.  https://doi.org/10.2216/15-98.1 CrossRefGoogle Scholar
  55. Khalid M, Khalid N, Ahmed I, Hanif R, Ismail M, Janjua HA (2017) Comparative studies of three novel freshwater microalgae strains for synthesis of silver nanoparticles: insights of characterization, antibacterial, cytotoxicity and antiviral activities. J Appl Phycol 29:1851–1863.  https://doi.org/10.1007/s10811-017-1071-0 CrossRefGoogle Scholar
  56. Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco RF (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65(5):2256–2259PubMedPubMedCentralGoogle Scholar
  57. Koopi H, Buazar F (2018) A novel one-pot biosynthesis of pure alpha aluminum oxide nanoparticles using the macroalgae Sargassum ilicifolium: a green marine approach. Ceram Int 44:8940–8945.  https://doi.org/10.1016/j.ceramint.2018.02.091 CrossRefGoogle Scholar
  58. Kuyucak N, Volesky B (1989) Accumulation of cobalt by marine alga. Biotechnol Bioeng 33:809–814.  https://doi.org/10.1002/bit.260330703 CrossRefPubMedGoogle Scholar
  59. Kuyucak N, Volesky B (1990) Biosorption by algal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 173–198Google Scholar
  60. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40:6304–6309.  https://doi.org/10.1021/es061040r CrossRefPubMedGoogle Scholar
  61. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23:2694–2699.  https://doi.org/10.1021/la0613124 CrossRefPubMedGoogle Scholar
  62. Li WKW (1980) Cellular accumulation and distribution of cadmium in Isochrysis galbana during growth inhibition and recovery. J Plankton Res 2:283–294.  https://doi.org/10.1093/plankt/2.4.283 CrossRefGoogle Scholar
  63. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964.  https://doi.org/10.3390/molecules18055954 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mandal RP, Sekh S, Sarkar NS, Chattopadhyay D, De S (2016) Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation. Mater Res Exp 3:1–11.  https://doi.org/10.1088/2053-1591/3/5/055007 CrossRefGoogle Scholar
  65. Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium-polluted seawater. Prog Ind Microbiol 35:33–38.  https://doi.org/10.1016/S0079-6352(99)80095-2 CrossRefGoogle Scholar
  66. Mehra RK, Kodati R, Abdullah R (1995) Chain length-dependent Pb (II)-coordination in phytochelatins. Biochem Biophys Res Commun 2015:730–736CrossRefGoogle Scholar
  67. Mehta SK, Gaur JP (1999) Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259.  https://doi.org/10.1046/j.1469-8137.1999.00447.x CrossRefGoogle Scholar
  68. Merin DD, Prakash S, Bhimba BV (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 3:797–799.  https://doi.org/10.1016/S1995-7645(10)60191-5 CrossRefGoogle Scholar
  69. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1:149–152.  https://doi.org/10.5681/bi.2011.023 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949.  https://doi.org/10.1007/s12010-015-1690-3 CrossRefPubMedGoogle Scholar
  71. Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52:383–395.  https://doi.org/10.1016/S0141-1136(01)00093-9 CrossRefPubMedGoogle Scholar
  72. Mubarakali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11.  https://doi.org/10.1016/j.matlet.2012.01.026 CrossRefGoogle Scholar
  73. Muhaemin M (2004) Toxicity and bioaccumulation of lead in Chlorella and Dunaliella. Journal of Coastal Development 8(1):27–33Google Scholar
  74. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4- ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588.  https://doi.org/10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K CrossRefGoogle Scholar
  75. Mukherjee A, Das D, Kumar Mondal S, Biswas R, Kumar Das T, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73:172–182.  https://doi.org/10.1016/j.ecoenv.2009.09.015 CrossRefPubMedGoogle Scholar
  76. Murali O, Mehar SK (2014) Bioremediation of heavy metals using Spirulina. Int J Geol Earth Environ Sci 4:244–249.  https://doi.org/10.9735/0975-2943.1.2.50-54 CrossRefGoogle Scholar
  77. Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S (2017) Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res 24:19459–19464.  https://doi.org/10.1007/s11356-017-9772-0 CrossRefGoogle Scholar
  78. Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750.  https://doi.org/10.1007/s002530051457 CrossRefPubMedGoogle Scholar
  79. Ochari E (1997) Bioinorganic chemistry: an introduction (Align and Bacon, Boston) 1Google Scholar
  80. Parial D, Pal R (2015) Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J Appl Phycol 27:975–984.  https://doi.org/10.1007/s10811-014-0355-x CrossRefGoogle Scholar
  81. Parial D, Patra HK, Dasgupta AK, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29.  https://doi.org/10.1080/09670262.2011.653406 CrossRefGoogle Scholar
  82. Pawlik-Skowrońska B (2003a) Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different heavy metal concentrations. Aquat Bot 75:189–198.  https://doi.org/10.1016/S0304-3770(02)00175-4 CrossRefGoogle Scholar
  83. Pawlik-Skowrońska B (2003b) When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquat Toxicol 62:155–163.  https://doi.org/10.1016/S0166-445X(02)00080-2 CrossRefPubMedGoogle Scholar
  84. Pérez-Rama M, Herrero C, Abalde J, Torres E (2001) Class III metallothioneins in response to cadmium toxicity in the marine microalga Tetraselmis suecica (Kylin) Butch. Environ Toxicol Chem 20:2061–2066CrossRefGoogle Scholar
  85. Perez-Rama M, Alonso JA, Lopez CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84:265–270.  https://doi.org/10.1016/S0960-8524(02)00045-7 CrossRefPubMedGoogle Scholar
  86. Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL Press, Oxford, pp 1–37Google Scholar
  87. Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P (2014) Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 174:2777–2790.  https://doi.org/10.1007/s12010-014-1225-3 CrossRefPubMedGoogle Scholar
  88. Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45.  https://doi.org/10.1016/j.micpath.2017.11.013 CrossRefPubMedGoogle Scholar
  89. Pytlik N, Kaden J, Finger M, Naumann J, Wanke S, Machill S, Brunner E (2017) Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses. Algal Res 28:9–15.  https://doi.org/10.1016/j.algal.2017.10.004 CrossRefGoogle Scholar
  90. Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109.  https://doi.org/10.1007/978-0-387-75532-8_9 CrossRefPubMedGoogle Scholar
  91. Rajeshkumar S (2018) Synthesis of zinc oxide nanoparticles using algal formulation (Padina tetrastromatica and Turbinaria conoides) and their antibacterial activity against fish pathogens. Res J Biotechnol 13:15–19Google Scholar
  92. Rajeshkumar S, Kannan C, Annadurai G (2012) Drug invention today synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Inven Today 4:511–513Google Scholar
  93. Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44.  https://doi.org/10.1186/2193-8865-3-44 CrossRefGoogle Scholar
  94. Ramakritinan CM, Kaarunya E, Shankar S, Kumaraguru AK (2013) Antibacterial effects of Ag, Au and bimetallic (Ag-Au) Nanoparticles synthesized from red algae. Solid State Phenom 201:211–230.  https://doi.org/10.4028/www.scientific.net/SSP.201.211 CrossRefGoogle Scholar
  95. Rao MD, Gautam P (2016) Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: a green approach. Environ Prog Sustain Energy 35:1020–1026.  https://doi.org/10.1002/ep.12315 CrossRefGoogle Scholar
  96. Rao MD, Pennathura G (2016) Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater Res Bull 85:64–73.  https://doi.org/10.1016/j.materresbull.2016.08.049 CrossRefGoogle Scholar
  97. Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86CrossRefGoogle Scholar
  98. Remacle J (1990) The cell wall and metal binding. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 83–92Google Scholar
  99. Roy S, Anantharam P (2018) Biosynthesis of silver nanoparticles by Sargassum ilicifolium( turner) C. Agardh with their antimicrobial activity and potential for seed germination. J Appl Phys Nanotechnol 1:1–9Google Scholar
  100. Sadler WR, Trudinger PA (1967) The inhibition of microorganisms by heavy metals. Mineral Deposits 2:158–168.  https://doi.org/10.1007/BF00201912 CrossRefGoogle Scholar
  101. Sag Y, Kutsal T (2001) Recent trends in the biosorption of heavy metals: a review. Biotechnol Bioprocess Eng 6:376–385.  https://doi.org/10.1007/BF02932318 CrossRefGoogle Scholar
  102. Sanaeimehr Z, Javadi I, Namvar F (2018) Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nano 9:3.  https://doi.org/10.1186/s12645-018-0037-5 CrossRefGoogle Scholar
  103. Sangeetha N, Saravanan K (2014) Biogenic silver nanoparticles using marine seaweed (Ulva lactuca ) and evaluation of its antibacterial activity. J Nanosci Nanotechnol 2:99–102Google Scholar
  104. Satapathy S, Shukla SP, Sandeep KP, Singh AR, Sharma N (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol 27:285–291.  https://doi.org/10.1007/s10811-014-0311-9 CrossRefGoogle Scholar
  105. Satoh M, Karaki E, Kakehashi M, Okazaki E, Gotoh T, Oyama Y (1999) Heavy-metal induced changes in nonproteinaceous thiol levels and heavy-metal binding peptide in Tetraselmis tetrathele (Prasinophyceae). J Phycol 35:989–994.  https://doi.org/10.1046/j.1529-8817.1999.3550989.x CrossRefGoogle Scholar
  106. Sayadi MH, Salmani N, Heidari A, Rezaei MR (2018) Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surf Interface 10:136–143.  https://doi.org/10.1016/j.surfin.2018.01.002 CrossRefGoogle Scholar
  107. Scarano G, Morelli E (2002) Characterization of cadmium- and lead- phytochelatin complexes formed in a marine microalga in response to metal exposure. BioMetals 15:145–151.  https://doi.org/10.1023/A:1015288000218 CrossRefPubMedGoogle Scholar
  108. Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803–810.  https://doi.org/10.1016/S0168-9452(03)00274-7 CrossRefGoogle Scholar
  109. Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216.  https://doi.org/10.1007/s11051-011-0221-6 CrossRefGoogle Scholar
  110. Sekabira K, Origa H, Basamba T, Mutumba G, Kakudidi E (2011) Application of algae in biomonitoring and phytoextaction of heavy metals contamination in urban stream water. Int J Environ Sci Technol 8:115–128.  https://doi.org/10.1007/BF03326201 CrossRefGoogle Scholar
  111. Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118.  https://doi.org/10.1016/j.matlet.2012.04.009 CrossRefGoogle Scholar
  112. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57:71–75.  https://doi.org/10.1042/BA20100196 CrossRefPubMedGoogle Scholar
  113. Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal Behav 7:392–399.  https://doi.org/10.4161/psb.19173 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4:881–888.  https://doi.org/10.1007/s13204-013-0271-4 CrossRefGoogle Scholar
  115. Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97.  https://doi.org/10.1016/j.matlet.2013.10.107 CrossRefGoogle Scholar
  116. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124(3):1327–1334.  https://doi.org/10.1104/pp.124.3.1327 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng 37:991–997.  https://doi.org/10.1007/s00449-013-1069-1 CrossRefPubMedGoogle Scholar
  118. Shivakumar CK, Thippeswamy B, Krishnappa M (2014) Studies on heavy metals detoxification biomarkers in fungal consortia. Carib J Sci Tech 2:496–502Google Scholar
  119. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101.  https://doi.org/10.1016/j.colsurfb.2007.01.010 CrossRefPubMedGoogle Scholar
  120. Sobolev D, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456.  https://doi.org/10.3390/ijerph5050450 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317.  https://doi.org/10.1016/j.aquatox.2004.11.011 CrossRefPubMedGoogle Scholar
  122. Soleimani M, Habibi-Pirkoohi M (2017) Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus. Avicenna J Med Biotechnol 9:120–125PubMedPubMedCentralGoogle Scholar
  123. Subramanian P, Periyannan R, Gandhi V, Ganesan R, Ramar M, Marimuthu PN (2016) A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater Lett 189:196–200.  https://doi.org/10.1016/j.matlet.2016.12.005 CrossRefGoogle Scholar
  124. Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 51:393–399.  https://doi.org/10.1016/j.saa.2013.04.083 CrossRefPubMedGoogle Scholar
  125. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108.  https://doi.org/10.1016/j.aquatox.2017.04.015 CrossRefPubMedGoogle Scholar
  126. Suriya J, Bharathi RS, Sekar V, Rajasekaran R (2012) Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. African J Biotechnol 11:12192–12198.  https://doi.org/10.5897/AJB12.452 CrossRefGoogle Scholar
  127. Todd T, Zhen Z, Tang W, Chen H, Wang G, Chuang YJ, Deaton K, Pan Z, Xie J (2014) Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale 6:2073–2076.  https://doi.org/10.1039/c3nr05623f CrossRefPubMedPubMedCentralGoogle Scholar
  128. Torres E, Cid A, Fidalgo P, Herrero C, Abalde J (1997) Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquat Toxicol 39:231–246CrossRefGoogle Scholar
  129. Torricelli E, Gorbi G, Pawlik-Skowronska B, Di Toppi LS, Corradi MG (2004) Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquat Toxicol 68:315–323.  https://doi.org/10.1016/j.aquatox.2004.03.020 CrossRefPubMedGoogle Scholar
  130. Toster J, Zhou QL, Smith NM, Iyer KS, Rosei F, Raston CL (2013) In situ coating of diatom frustules with silver nanoparticles. Green Chem 15:2060–2063.  https://doi.org/10.1039/c3gc40660a CrossRefGoogle Scholar
  131. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659.  https://doi.org/10.1016/S0006-291X(02)00265-6 CrossRefPubMedGoogle Scholar
  132. Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry 62:453–459.  https://doi.org/10.1016/S0031-9422(02)00559-9 CrossRefPubMedGoogle Scholar
  133. Tyagi P, Buddhi D, Chodhary R, Sawheny RL (2000) Degradation of ground water quality due to heavy metals in industrial areas of India-a review. Indian J Environ Prot 20(3):174–181Google Scholar
  134. Vasquez RD, Apostol JG, De Leon JD, Mariano JD, Marie C, Mirhan CMC, Pangan SS, Reyes AGM, Zamora ET (2016) Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum J.G.Agardh: assessment of toxicity and hepatoprotective activity. OpenNano 1:16–24.  https://doi.org/10.1016/j.onano.2016.03.001 CrossRefGoogle Scholar
  135. Venkatraman A, Yahoob SAM, Nagarajan Y, Harikrishnan S, Vasudevan S, Murugasamy T (2018) Pharmacological activity of biosynthesized gold nano-particles from brown algae-seaweed Turbinaria conoides. NanoWorld J 4:17–22.  https://doi.org/10.17756/nwj.2018-055 CrossRefGoogle Scholar
  136. Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148PubMedPubMedCentralGoogle Scholar
  137. Volesky B (1990) Biosorption of heavy metals. CRC Press, FloridaGoogle Scholar
  138. Vymazal J (1990) Toxicity and accumulation of lead with respect to algae and cyanobacteria: a review. Acta Hydrochim Hydrobiol 18:513–535.  https://doi.org/10.1002/aheh.19900180502 CrossRefGoogle Scholar
  139. Wikfors G, Neeman A, Jackson PA (1991) Cadmium-binding polypeptides in microalgal strains with laboratory-induced cadmium tolerance. Mar Ecol Prog Ser 79:163–170.  https://doi.org/10.3354/meps079163 CrossRefGoogle Scholar
  140. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812.  https://doi.org/10.1016/0734-9750(93)90003-6 CrossRefPubMedGoogle Scholar
  141. Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73:133–137.  https://doi.org/10.1016/S0960-8524(99)00175-3 CrossRefGoogle Scholar
  142. Xie J, Lee JY, Wang DIC, Ting YP (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3(4):672–682.  https://doi.org/10.1002/smll.200600612 CrossRefPubMedGoogle Scholar
  143. Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496.  https://doi.org/10.1016/S0043-1354(03)00409-3 CrossRefPubMedGoogle Scholar
  144. Yoshida N, Ikeda R, Okuno T (2006) Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Bioresour Technol 97:1843–1849.  https://doi.org/10.1016/j.biortech.2005.08.021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eepsita Priyadarshini
    • 1
    • 2
  • Sushree Sangita Priyadarshini
    • 1
    • 3
  • Nilotpala Pradhan
    • 1
    • 3
    Email author
  1. 1.Environment and Sustainability DepartmentCSIR-Institute of Minerals and Materials Technology (CSIR-IMMT)BhubaneswarIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Academy of Scientific and Innovative ResearchCSIR-Institute of Minerals and Materials Technology (CSIR-IMMT)BhubaneswarIndia

Personalised recommendations