Advertisement

Endophyte-mediated synthesis of silver nanoparticles and their biological applications

  • Sidra Rahman
  • Lubna Rahman
  • Ali Talha Khalil
  • Nasir Ali
  • Dania Zia
  • Muhammad AliEmail author
  • Zabta Khan Shinwari
Mini-Review

Abstract

Biosynthesis has emerged as a frontier technology for fabrication of functionally diverse nanoparticles that possess tremendous therapeutic implications. Various biological resources have already demonstrated their potential to produce nanoparticles with interesting features. Endophytic microbes live in a symbiotic relationship with plants possessing a unique and versatile reservoir of potentially therapeutic secondary metabolites having the tendency to reduce metallic ions into nanoparticles. Successful biosynthesis of AgNPs using endophytic organisms has already been reported; however, the overall picture about its synthesis and applications is still not clear. In the current article, a comprehensive review of literature was performed for comparing different physical and biological properties of endophytic microbe-derived AgNPs. In addition, the present paper mechanistically explains the synthesis of AgNPs and their diverse pharmacognostic properties. Further studies are encouraged to understand the mechanism of biopharmaceutical effects of these endophyte-mediated NPs.

Keywords

Endophytes Endophytic bacteria Endophytic fungi Nanotechnology Silver nanoparticles Antimicrobial activity 

Notes

Author contributions

ZKS and MA conceived the study. SR, LR, ATK, NA, and DZ search the literature and drafted the manuscript. ATK, SR, and MA revised the manuscript. All the authors studied and approved the manuscript.

Funding information

This study is financially supported by the Higher Education Commission, Pakistan, through NRPU Project No. 2860.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? Fungal Nanobionics: Principles and Applications. Springer, pp 61–87.  https://doi.org/10.1007/978-981-10-8666-3_3
  2. Abdelghany T, Al-Rajhi AM, Al Abboud MA, Alawlaqi M, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience 8(1):5–16.  https://doi.org/10.1007/s12668-017-0413-3 CrossRefGoogle Scholar
  3. Abdel-Hafez S, Nafady NA, Abdel-Rahim IR, Shaltout AM, Mohamed MA (2016) Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum. Int J Nano Chem 2(1):11–19.  https://doi.org/10.18576/ijnc/020103 CrossRefGoogle Scholar
  4. Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81(3):399–408CrossRefGoogle Scholar
  5. Akther T, Khan MS, Srinivasan H (2018) A facile and rapid method for green synthesis of Silver Myco nanoparticles using endophytic. Int J Nano Dimens 9(4):435–441Google Scholar
  6. Almutairi ZM (2016) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol 18:449–457.  https://doi.org/10.17957/IJAB/15.0114 CrossRefGoogle Scholar
  7. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391.  https://doi.org/10.1016/j.biomaterials.2003.10.078 CrossRefPubMedGoogle Scholar
  8. Amanulla AM, Shahina SJ, Sundaram R, Magdalane CM, Kaviyarasu K, Letsholathebe D, Mohamed S, Kennedy J, Maaza M (2018) Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4-Co3O4 nanocomposites and its synthesis and characterization. J Photochem Photobiol B 183:233–241.  https://doi.org/10.1016/j.jphotobiol.2018.04.034 CrossRefGoogle Scholar
  9. Baker S, Satish S (2012) Endophytes: toward a vision in synthesis of nanoparticle for future therapeutic agents. Int J Bio-Inorg Hybd Nanomat 1(2):67–77.  https://doi.org/10.1002/9781118369920.ch1 CrossRefGoogle Scholar
  10. Baker S, Shreedharmurthy S (2012) Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L. Sci J Biol Sci 1(5):107–113Google Scholar
  11. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249.  https://doi.org/10.1166/jnn.2005.034 CrossRefPubMedGoogle Scholar
  12. Baker S, Sahana S, Rakshith D, Kavitha H, Kavitha K, Satish S (2012) Biodecaffeination by endophytic Pseudomonas sp. isolated from Coffee arabica L. J Pharm Res 5(7):3654–3657Google Scholar
  13. Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts 3(3):111–117.  https://doi.org/10.5681/bi.2013.012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baker S, Kavitha KS, Yashavantha Rao HC, Rakshith D, Harini BP, Kumar K, Satish S (2015a) Bacterial endo-symbiont inhabiting Tridax procumbens L. and their antimicrobial potential. Chin J Biol.  https://doi.org/10.1155/2015/309267
  15. Baker S, Kumar KM, Santosh P, Rakshith D, Satish S (2015b) Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity. Spectrochim Acta A Mol Biomol Spectrosc 136:1434–1440.  https://doi.org/10.1016/j.saa.2014.10.033 CrossRefPubMedGoogle Scholar
  16. Barabadi H, Ovais M, Shinwari ZK, Saravanan M (2017) Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev 10(4):285–314.  https://doi.org/10.1080/17518253.2017.1385856 CrossRefGoogle Scholar
  17. Barreiro E, Casas JS, Couce MD, Sánchez A, Seoane R, Sordo J, Varela JM, Vázquez-López EM (2007) Synthesis and antimicrobial activities of silver (i) sulfanylcarboxylates. Structural isomers with identically or unequally coordinated Ag centers in an Ag 4 S 4 ring. Dalton Trans 28:3074–3085.  https://doi.org/10.1039/b702936e CrossRefGoogle Scholar
  18. Bhattacharjee S, Debnath G, Das AR, Saha AK, Das P (2017) Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Adv Nat Sci: J Nanosci Nanotechnol 8(4):045008.  https://doi.org/10.1088/2043-6254/aa84ec CrossRefGoogle Scholar
  19. Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438.  https://doi.org/10.3732/ajb.1000298 CrossRefPubMedGoogle Scholar
  20. Bonfante P (2018) The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytol 220(4):982–995.  https://doi.org/10.1111/nph.15397 CrossRefPubMedGoogle Scholar
  21. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. JKSUS 28(4):273–279.  https://doi.org/10.1016/j.jksus.2016.05.004 CrossRefGoogle Scholar
  22. Chan S, Don M (2012) Characterization of Ag nanoparticles produced by white-rot fungi and its in vitro antimicrobial activities. Int Arab J Antimicrob Agents 2(3: 3):1–8.  https://doi.org/10.3823/717 CrossRefGoogle Scholar
  23. Chandrappa C, Govindappa M, Chandrasekar N, Sarkar S, Ooha S, Channabasava R (2016) Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum. Adv Nat Sci: J Nanosci Nanotechnol 7(2):025016.  https://doi.org/10.1088/2043-6262/7/2/025016 CrossRefGoogle Scholar
  24. Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJ, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22(5):481–486.  https://doi.org/10.1007/s11274-005-9060-x CrossRefGoogle Scholar
  25. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607.  https://doi.org/10.1002/pat.630 CrossRefGoogle Scholar
  26. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197.  https://doi.org/10.1007/s00248-011-9883-y CrossRefPubMedGoogle Scholar
  27. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831CrossRefPubMedPubMedCentralGoogle Scholar
  28. Das A, Varma A (2009) Symbiosis: the art of living symbiotic fungi. Springer, pp 1–28.  https://doi.org/10.1007/978-3-540-95894-9_1
  29. Das R, Nath S, Chakdar D, Gope G, Bhattacharjee R (2009) Preparation of silver nanoparticles and their characterization. J Nanotechnol 5:1–6.  https://doi.org/10.2240/azojono0129 CrossRefGoogle Scholar
  30. de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417.  https://doi.org/10.1007/s00248-011-9919-3 CrossRefPubMedGoogle Scholar
  31. Devi LS, Joshi SR (2014) Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4. J Microbiol 52(8):667–674.  https://doi.org/10.1007/s12275-014-4113-1 CrossRefPubMedGoogle Scholar
  32. Devi LS, Joshi S (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37.  https://doi.org/10.1016/j.jmau.2014.10.004 CrossRefPubMedGoogle Scholar
  33. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay N (2009) Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram Int 35(6):2295–2304.  https://doi.org/10.1016/j.ceramint.2009.01.002 CrossRefGoogle Scholar
  34. Diantoro M, Suprayogi T, Sa’adah U, Mufti N, Fuad A, Hidayat A, Nur H (2018) Modification of electrical properties of silver nanoparticle silver nanoparticles-fabrication, characterization and applications. IntechOpen.  https://doi.org/10.5772/intechopen.75682
  35. Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2008) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72(1):182–186.  https://doi.org/10.1021/np800733y CrossRefGoogle Scholar
  36. Dong Z-Y, Rao N, Prabhu M, Xiao M, Wang H-F, Hozzein WN, Chen W, Li W-J (2017) Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Front Microbiol 8:1090.  https://doi.org/10.3389/fmicb.2017.01090 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dudeja S, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52(3):248–260.  https://doi.org/10.1002/jobm.201100063 CrossRefPubMedGoogle Scholar
  38. Durán N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95(2):275–288.  https://doi.org/10.1007/s00253-012-4118-9 CrossRefPubMedGoogle Scholar
  39. El-Sonbaty S (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol 4(4–5):73–79.  https://doi.org/10.1007/s12645-013-0038-3 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya J (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701.  https://doi.org/10.1088/0957-4484/20/50/505701Feng CrossRefPubMedGoogle Scholar
  41. Feng QL, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRefPubMedGoogle Scholar
  42. Frank A, Saldierna Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5(4):70.  https://doi.org/10.3390/microorganisms5040070 CrossRefPubMedCentralGoogle Scholar
  43. García MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D 44(28):283001.  https://doi.org/10.1088/0022-3727/45/38/389501 CrossRefGoogle Scholar
  44. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140.  https://doi.org/10.1016/j.hydromet.2006.03.019 CrossRefGoogle Scholar
  45. Ghavam M (2018) Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress. J Rangeland Sci 8(1):93–100Google Scholar
  46. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15.  https://doi.org/10.6064/2012/963401 CrossRefGoogle Scholar
  47. Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452(7187):541–542CrossRefPubMedGoogle Scholar
  48. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54(10):4208–4218.  https://doi.org/10.1128/AAC.01830-09 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gravante G, Caruso R, Sorge R, Nicoli F, Gentile P, Cervelli V (2009) Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Ann Surg 63(2):201–205.  https://doi.org/10.1097/SAP.0b013e3181893825 CrossRefGoogle Scholar
  50. Gurunathan S, Raman J, Malek SNA, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399.  https://doi.org/10.2147/IJN.S51881 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai RS (2017) Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. J Clin Diagn Res 11(9):ZC92.  https://doi.org/10.7860/JCDR/2017/29434.10681 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10.  https://doi.org/10.1007/s13225-012-0158-9 CrossRefGoogle Scholar
  53. Hemashekhar B, Chandrappa C, Govindappa M, Chandrasekhar N, Ganganagappa N, Ramachandra Y (2017) Green synthesis of silver nanoparticles from endophytic fungus Aspergillus niger isolated from Simarouba glauca leaf and its antibacterial and antioxidant activity. Int J Eng Res Appl 7(8):17–24.  https://doi.org/10.9790/9622-0708011724 CrossRefGoogle Scholar
  54. Hiruma K, Kobae Y, Toju H (2018) Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Curr Opin Plant Biol 44:145–154.  https://doi.org/10.1016/j.pbi.2018.04.009 CrossRefPubMedGoogle Scholar
  55. Hojjat SS (2015) Impact of silver nanoparticles on germinated fenugreek seed. Int J Agric Crop Sci 8:627–630Google Scholar
  56. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884.  https://doi.org/10.1126/science.291.5505.881 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  58. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind Crop Prod 46:132–137.  https://doi.org/10.1016/j.indcrop.2013.01.019 CrossRefGoogle Scholar
  59. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40(20):5407–5411.  https://doi.org/10.1007/s10853-005-4339-8 CrossRefGoogle Scholar
  60. Jesudoss S, Vijaya JJ, Kaviyarasu K, Rajan PI, Narayanan S, Kennedy LJ (2018) In-vitro anti-cancer activity of organic template-free hierarchical M (Cu, Ni)-modified ZSM-5 zeolites synthesized using silica source waste material. J Photochem Photobiol B 186:178–188.  https://doi.org/10.1016/j.jphotobiol.2018.07.009 CrossRefPubMedGoogle Scholar
  61. Johnson N, Graham JH, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585.  https://doi.org/10.1046/j.1469-8137.1997.00729.x CrossRefGoogle Scholar
  62. Joshi CG (2017) Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides. Biochem Biophys Rep.  https://doi.org/10.1016/j.bbrep.2017.08.011
  63. Kansal S, Singh M, Sud D (2008) Studies on TiO2/ZnO photocatalysed degradation of lignin. J Hazard Mater 153(1–2):412–417.  https://doi.org/10.1016/j.jhazmat.2007.08.091 CrossRefPubMedGoogle Scholar
  64. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71(1):133–137.  https://doi.org/10.1016/j.colsurfb.2009.01.016 CrossRefGoogle Scholar
  65. Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, Kennedy J, Maaza M (2017a) In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C 74:325–333.  https://doi.org/10.1016/j.msec.2016.12.024 CrossRefGoogle Scholar
  66. Kaviyarasu K, Kanimozhi K, Matinise N, Magdalane CM, Mola GT, Kennedy J, Maaza M (2017b) Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater Sci Eng C 76:1012–1025.  https://doi.org/10.1016/j.msec.2017.03.210 CrossRefGoogle Scholar
  67. Kaviyarasu K, Magdalane CM, Kanimozhi K, Kennedy J, Siddhardha B, Reddy ES, Rotte NK, Sharma CS, Thema F, Letsholathebe D (2017c) Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem Photobiol B 173:466–475.  https://doi.org/10.1016/j.jphotobiol.2017.06.026 CrossRefPubMedGoogle Scholar
  68. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M (2018) Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol 46(4):838–852.  https://doi.org/10.1080/21691401.2017.1345928 CrossRefPubMedGoogle Scholar
  69. Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 228–233Google Scholar
  70. Khatami M, Alijani H, Sharifi I (2018) Biosynthesis of bimetallic and core shell nanoparticles: their biomedical applications: a review. IET Nanobiol 12:1–19.  https://doi.org/10.1049/iet-nbt.2017.0308 CrossRefGoogle Scholar
  71. Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484PubMedGoogle Scholar
  72. Klasen H (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138.  https://doi.org/10.1016/S0305-4179(99)00116-3 CrossRefPubMedGoogle Scholar
  73. Koduru JR, Kailasa SK, Bhamore JR, Kim K-H, Dutta T, Vellingiri K (2018) Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv Colloid Interf Sci 256:326–339.  https://doi.org/10.1016/j.cis.2018.03.001 CrossRefGoogle Scholar
  74. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran M, Kalaichelvan P (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49.  https://doi.org/10.1016/j.btre.2014.08.002
  75. Kumar A, Choudhary P, Verma P (2011) A comparative study on the treatment methods of textile dye effluents. Global J Environ Res 5(1):46–52Google Scholar
  76. Kumar TVR, Murthy J, Rao MN, Bhargava Y (2016) Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity. 3 Biotech 6(1):92.  https://doi.org/10.1007/s13205-016-0407-9
  77. Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220(4):1031–1046.  https://doi.org/10.1111/nph.15230
  78. Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3(4):282–294Google Scholar
  79. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391.  https://doi.org/10.1128/JB.186.16.5384-5391.2004
  80. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961.  https://doi.org/10.1039/b703034g CrossRefGoogle Scholar
  81. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2011) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476.  https://doi.org/10.3390/ijms13010466 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534CrossRefPubMedGoogle Scholar
  83. Mahgoub S, Samaras P (2014) Nanoparticles from biowastes and microbes: Focus on role in water purification and food preservation. In: 2nd International Conference on Sustainable Solid Waste ManagementGoogle Scholar
  84. Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK (2014) Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol 5(1):40.  https://doi.org/10.1186/s40543-014-0040-3 CrossRefGoogle Scholar
  85. Mallick K, Witcomb M, Scurrell M (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39(14):4459–4463.  https://doi.org/10.1023/B:JMSC.0000034138.80116.50 CrossRefGoogle Scholar
  86. Manikprabhu D, Lingappa K (2014) Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: an antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Mater Sci Eng C 45:434–437.  https://doi.org/10.1016/j.msec.2014.09.034 CrossRefGoogle Scholar
  87. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45(1):30–40.  https://doi.org/10.1002/jcb.240450109 CrossRefPubMedGoogle Scholar
  88. Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75.  https://doi.org/10.2174/22115501113026660038 CrossRefGoogle Scholar
  89. Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6(1):14.  https://doi.org/10.3390/microorganisms6010014 CrossRefPubMedCentralGoogle Scholar
  90. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519.  https://doi.org/10.1021/nl0155274 CrossRefGoogle Scholar
  91. Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi A, Kale S (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103.  https://doi.org/10.1088/0957-4484/19/7/075103 CrossRefPubMedGoogle Scholar
  92. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316–335.  https://doi.org/10.7150/thno.7819 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR (2015) A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mater Chem B 3(18):3820–3830.  https://doi.org/10.1039/C5TB00244C CrossRefGoogle Scholar
  94. Neethu S, Midhun SJ, Radhakrishnan E, Jyothis M (2018a) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog 116:263–272.  https://doi.org/10.1016/j.micpath.2018.01.033 CrossRefPubMedGoogle Scholar
  95. Neethu S, Midhun SJ, Sunil M, Soumya S, Radhakrishnan E, Jyothis M (2018b) Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. J Photochem Photobiol B 180:175–185.  https://doi.org/10.1016/j.jphotobiol.2018.02.005 CrossRefPubMedGoogle Scholar
  96. Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016a) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696.  https://doi.org/10.2147/IJN.S112857 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016b) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6(2):132.  https://doi.org/10.1007/s13205-016-0433-7 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190(3):783–793.  https://doi.org/10.1111/j.1469-8137.2010.03611.x CrossRefPubMedGoogle Scholar
  99. Ovais M, Ahmad I, Khalil AT, Mukherjee S, Javed R, Ayaz M, Raza A, Shinwari ZK (2018a) Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol 102:1–14.  https://doi.org/10.1007/s00253-018-8939-z CrossRefGoogle Scholar
  100. Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S (2018b) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100.  https://doi.org/10.3390/ijms19124100 CrossRefPubMedCentralGoogle Scholar
  101. Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S (2018c) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102:1–16.  https://doi.org/10.1007/s00253-018-9146-7 CrossRefGoogle Scholar
  102. Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK (2018d) Phyto-therapeutic and nanomedicinal approach to cure Alzheimer disease: present status and future opportunities. Front Aging Neurosci 10:284.  https://doi.org/10.3389/fnagi.2018.00284 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720.  https://doi.org/10.1128/AEM.02218-06 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed (De Gruyter Open) 6(3)Google Scholar
  105. Parikh D, Fink T, Rajasekharan K, Sachinvala N, Sawhney A, Calamari T, Parikh AD (2005) Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Text Res J 75(2):134–138.  https://doi.org/10.1177/004051750507500208 CrossRefGoogle Scholar
  106. Parker MA (1999) Mutualism in metapopulations of legumes and rhizobia. Am Nat 153(S5):S48–S60.  https://doi.org/10.1086/303211 CrossRefPubMedGoogle Scholar
  107. Percival SL, Bowler PG, Dolman J (2007) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 4(2):186–191.  https://doi.org/10.1111/j.1742-481X.2007.00296.x CrossRefPubMedGoogle Scholar
  108. Perotto S, Daghino S, Martino E (2018) Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol 220(4):982–995.  https://doi.org/10.1111/nph.15218 CrossRefGoogle Scholar
  109. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375.  https://doi.org/10.1146/annurev-phyto-082712-102340 CrossRefPubMedGoogle Scholar
  110. Popli D, Anil V, Subramanyam AB, Rao SN, Rai RV, Govindappa M (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 5:1–8.  https://doi.org/10.1080/21691401.2018.1434188 CrossRefGoogle Scholar
  111. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32.  https://doi.org/10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  112. Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619.  https://doi.org/10.1007/s00449-013-0937-z CrossRefPubMedGoogle Scholar
  113. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424.  https://doi.org/10.1146/annurev-phyto-081211-172908 CrossRefPubMedGoogle Scholar
  114. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178.  https://doi.org/10.5101/nbe.v3i3.p174-178 CrossRefGoogle Scholar
  115. Rahi DK, Parmar AS (2014) Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. Int J Nano Biostruct 4(3):46–51.  https://doi.org/10.5897/AJB2017.15873 CrossRefGoogle Scholar
  116. Rahi D, Parmar A, Tiwari V (2014) Biosynthesis of silver nanoparticles from fungal root endophytes of Sida acuta plant and evaluation of their antibacterial and antibiotic enhancing activity. Int J Pharm Pharm Sci 6(11):160–166Google Scholar
  117. Rahman L, Shinwari ZK, Iqrar I, Rahman L, Tanveer F (2017) An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica. Ann Clin Microbiol Antimicrob 16(1):53.  https://doi.org/10.1186/s12941-017-0228-7 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kaviyarasu K, Raman RG, Swaminathan M (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B 181:53–58.  https://doi.org/10.1016/j.jphotobiol.2018.02.011 CrossRefPubMedGoogle Scholar
  119. Ramalingmam P, Muthukrishnan S, Thangaraj P (2015) Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng 1:241–247Google Scholar
  120. Ramamurthy C, Padma M, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloid Surf B 102:808–815.  https://doi.org/10.1016/j.colsurfb.2012.09.025 CrossRefGoogle Scholar
  121. Rani R, Sharma D, Chaturvedi M, Yadav JP (2017) Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. J Nanomed Nanotechnol 8(457):1–8.  https://doi.org/10.4172/2157-7439.1000457 CrossRefGoogle Scholar
  122. Rao Y, Chinnappa H, Nagendra-Prasad MN, Prasad A, Harini BP, Azmath P, Rakshith D, Satish S (2016) Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting Euphorbia hirta L and their bactericidal potential. Scientifica 2016:9020239.  https://doi.org/10.1155/2016/9020239 CrossRefGoogle Scholar
  123. Rathjen D, Read L (2005) Nanotechnology. Enabling technologies for Australian innovative industries. In: Paper prepared by an independent working group for the Prime Minister’s Science, Engineering and Innovation Council, PMSEICGoogle Scholar
  124. Ray S, Singh J, Rajput R, Singh H, Singh S (2018) Endophytic bacteria: an essential requirement of phyto nutrition. Nutri Food Sci Int J 5(2):555657.  https://doi.org/10.19080/NFSIJ.2018.05.555657 CrossRefGoogle Scholar
  125. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443.  https://doi.org/10.1007/s13205-016-0433-7 CrossRefPubMedGoogle Scholar
  126. Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim S-H (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol 75(2):407–418.  https://doi.org/10.1007/s00248-017-1054-3 CrossRefPubMedGoogle Scholar
  127. Rodriguez R, White J Jr, Arnold A, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330.  https://doi.org/10.1111/j.1469-8137.2009.02773.x CrossRefPubMedGoogle Scholar
  128. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450.  https://doi.org/10.1016/S0196655304004742 CrossRefPubMedGoogle Scholar
  129. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9.  https://doi.org/10.1111/j.1574-6968.2007.00918.x CrossRefPubMedGoogle Scholar
  130. Salunke BK, Sawant SS, Lee S-I, Kim BS (2016) Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 32(5):88.  https://doi.org/10.1007/s11274-016-2044-1 CrossRefPubMedGoogle Scholar
  131. Sandhu SS, Shukla H, Shukla S (2017) Biosynthesis of silver nanoparticles by endophytic fungi: its mechanism, characterization techniques and antimicrobial potential. Afr J Biotechnol 16(14):683–698.  https://doi.org/10.5897/AJB2017.15873 CrossRefGoogle Scholar
  132. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3(2):218–228.  https://doi.org/10.1021/am100840c CrossRefPubMedGoogle Scholar
  133. Schulz B (2006) Mutualistic interactions with fungal root endophytes. Microbial root endophytes. Springer, pp 261–279.  https://doi.org/10.1007/3-540-33526-9_15
  134. Schutz BI (2001) Bioactive fungal metabolites-impact and exploitation, British mycological society, international symposium proceedings. University of Wales, SwanseaGoogle Scholar
  135. Shah A, Lutfullah G, Ahmad K, Khalil AT, Maaza M (2018) Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev 11(3):318–333.  https://doi.org/10.1080/17518253.2018.1502365 CrossRefGoogle Scholar
  136. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96.  https://doi.org/10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  137. Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):14.  https://doi.org/10.1186/s12951-018-0334-5 CrossRefGoogle Scholar
  138. Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P (2013a) Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 7(5):448–453.  https://doi.org/10.1016/j.jopr.2013.06.003 CrossRefGoogle Scholar
  139. Singh SK, Tang WZ, Tachiev G (2013b) Fenton treatment of landfill leachate under different COD loading factors. Waste Manag 33(10):2116–2122.  https://doi.org/10.1016/j.wasman.2013.06.019 CrossRefPubMedGoogle Scholar
  140. Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World. J Pharm Pharm Sci 7:730–762.  https://doi.org/10.20959/wjpps20167-7227 CrossRefGoogle Scholar
  141. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel S (2017) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 15(1):31–39.  https://doi.org/10.1016/j.jgeb.2017.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Smith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K, Kingery D, Babbs B, Fenn K, Greene JS, Hann BD (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3(8):e3052.  https://doi.org/10.1371/journal.pone.0003052 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Soares MR, Corrêa RO, Stroppa PHF, Marques FC, Andrade GF, Corrêa CC, Brandão MAF, Raposo NR (2018) Biosynthesis of silver nanoparticles using Caesalpinia ferrea (Tul.) Martius extract: physicochemical characterization, antifungal activity and cytotoxicity. Peer J 6:e4361.  https://doi.org/10.7717/peerj.4361 CrossRefPubMedGoogle Scholar
  144. Soleimani FF, Saleh T, Shojaosadati SA, Poursalehi R (2018) Green synthesis of different shapes of silver nanostructures and evaluation of their antibacterial and cytotoxic activity. BioNanoScience 8(1):72–80.  https://doi.org/10.1007/s12668-017-0423-1 CrossRefGoogle Scholar
  145. Song H, Ko K, Oh I, Lee B (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater 11(Suppl 1):58Google Scholar
  146. Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3(2):75–93.  https://doi.org/10.1080/17429140801886293 CrossRefGoogle Scholar
  147. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544.  https://doi.org/10.1016/S1286-4579(03)00073-X CrossRefPubMedGoogle Scholar
  148. Sunkar S, Nachiyar CV (2012a) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959.  https://doi.org/10.1016/S2221-1691(13)60006-4 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sunkar S, Nachiyar CV (2012b) A novel source in the benign synthesis. Global J Medical Res 12:43–50Google Scholar
  150. Suvith V, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 118:526–532.  https://doi.org/10.1016/j.saa.2013.09.016 CrossRefPubMedGoogle Scholar
  151. Svenningsen NB, Watts-Williams SJ, Joner EJ, Battini F, Efthymiou A, Cruz-Paredes C, Nybroe O, Jakobsen I (2018) Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J 12(5):1296–1307.  https://doi.org/10.1038/s41396-018-0059-3 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147.  https://doi.org/10.1016/j.saa.2013.05.030 CrossRefPubMedGoogle Scholar
  153. Thomas R, Jasim B, Mathew J, Radhakrishnan E (2012) Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomed Eng 4(4):183–187.  https://doi.org/10.5101/nbe.v4i4.p183-187 CrossRefGoogle Scholar
  154. Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS (2016) Network modules and hubs in plant-root fungal biomes. J R Soc Interface 13(116):20151097.  https://doi.org/10.1098/rsif.2015.1097 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Tuomanen E, Durack D, Tomasz A (1986) Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother 30(4):521–527CrossRefPubMedPubMedCentralGoogle Scholar
  156. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40.  https://doi.org/10.2217/nnm.09.77 CrossRefPubMedGoogle Scholar
  157. Verma SK, Gond S, Mishra A (2016) Biofabrication of antibacterial and antioxidant silver nanoparticles (Agnps) by an endophytic fungus Pestalotia Sp. isolated from Madhuca longifolia. J Nanomater Mol Nanotechnol 5:3.  https://doi.org/10.4172/2324-8777.1000189 CrossRefGoogle Scholar
  158. Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418.  https://doi.org/10.1016/j.matlet.2006.07.042 CrossRefGoogle Scholar
  159. Waseda Y, Matsubara E, Shinoda K (2011) X-ray diffraction crystallography: introduction, examples and solved problems. Springer Science & Business MediaGoogle Scholar
  160. White JF Jr, Reddy PV, Bacon CW (2000) Biotrophic endophytes of grasses: a systematic appraisal. Microbial endophytes. Marcel Dekker, Inc, New York, pp 49–62Google Scholar
  161. Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R (2018) Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacogn Mag 13(Suppl 4):S840–S844.  https://doi.org/10.4103/pm.pm_226_17 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yun’an Qing LC, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311.  https://doi.org/10.2147/IJN.S165125 CrossRefGoogle Scholar
  163. Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11(1):27–32CrossRefPubMedGoogle Scholar
  164. Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835.  https://doi.org/10.1080/07388551.2017.1414141 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyQuaid-i-Azam University IslamabadIslamabadPakistan
  2. 2.Department of Eastern Medicine and SurgeryQarshi UniversityLahorePakistan
  3. 3.Pakistan Academy of SciencesIslamabadPakistan

Personalised recommendations