Applied Microbiology and Biotechnology

, Volume 103, Issue 7, pp 3225–3236 | Cite as

Biodegradation of polyacrylic and polyester polyurethane coatings by enriched microbial communities

  • Martín Vargas-Suárez
  • Vianney Fernández-Cruz
  • Herminia Loza-TaveraEmail author
Environmental biotechnology


Microbial communities are more effective in degrading natural polymers and xenobiotics than pure cultures. Biodegradation of polyacrylic and polyurethane polymers by bacterial and fungal strains has been addressed, but limited information about their biodegradation by microbial communities exists. The aim of this work was to evaluate the ability of three enriched microbial communities (BP1h, BP3h, and BP7h), selected from deteriorated foam pieces collected in a landfill, to biodegrade the polyacrylic component of the 2K-PU coating Bayhydrol® A2470 and the polyester polyurethane coating NeoRez™ R-9637. Two communities were further selected to quantify extracellular esterase, protease, and urease activities, to identify their taxonomic composition, and to analyze the ability of their isolated members to grow in those polymers. The growth of the three communities was larger in polyester polyurethane than in polyacrylic and their biodegradative activities affected ester, urethane, ether, aromatic, and aliphatic groups of the compounds present in the coatings. From all the communities growing in polyacrylic or in polyester polyurethane, two and five different types of colonies were isolated, respectively. In polyacrylic, extracellular esterase and protease activities were at their maximum level at 7 days of culture, whereas in polyester polyurethane, protease and urease were greatest at 21 days. All the isolated community members were identified as xenobiotics degraders. The complete communities grew better in media with the polymers than the isolated members. This is one of the few studies reporting biodegradation of synthetic polymers by microbial communities and serves as basis for developing synthetic consortia with enhanced degradative abilities.


Biodegradation Microbial communities Polyacrylic Polyester polyurethane Xenobiotics 



V.F.C. acknowledges Programa 121, Formación Básica en Investigación, Facultad de Química, Universidad Nacional Autónoma de México for her scholarship. We thank Chem. Maricela Gutiérrez Franco for FTIR analysis carried out at Unidad de Servicios de Apoyo a la Investigación y a la Industria (USAII), Facultad de Química, UNAM. We also thank José Galván and Carlos Galván from Pinturas y Solventes de México, S.A. de C.V. for providing the coatings used in this study.

Funding information

This study was funded by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México grants IN217114 and IN223317, and Programa de Apoyo a la Investigación y el Posgrado, Facultad de Química, Universidad Nacional Autónoma de México, grant 5000-9117.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Allen A, Hilliard N, Howard GT (1999) Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. Int Biodeterior Biodegradation 43(1–2):37–41. CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. CrossRefGoogle Scholar
  3. Asperger O, Naumann A, Kleber HP (1981) Occurrence of cytochrome P-450 in Acinetobacter strains after growth on N-hexadecane. FEMS Microbiol Lett 11(4):309–312. CrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1997) Current protocols in molecular biology. John Wiley & Sons, Inc, New YorkGoogle Scholar
  5. Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation. Int J Phytoremediation 19(10):955–963. CrossRefPubMedGoogle Scholar
  6. Blake RC, Norton WN, Howard GT (1998) Adherence and growth of a Bacillus species on an insoluble polyester polyurethane. Int Biodeterior Biodegradation 42(1):63–73. CrossRefGoogle Scholar
  7. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. CrossRefGoogle Scholar
  8. Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistans. FEBS Lett 416(1):61–64. CrossRefPubMedGoogle Scholar
  9. Buchan A, Neidle EL, Moran MA (2001) Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl Environ Microbiol 67(12):5801–5809. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cameron MD, Post ZD, Stahll JD, Haselbach J, Aust SD (2000) Cellobiose dehydrogenase-dependent biodegradation of polyacrylate polymers by Phanerochaete chrysosporium. Environ Sci Pollut R 7(3):130–134. CrossRefGoogle Scholar
  11. Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73(18):5817–5824.
  12. Crossno SK, Kalbus LH, Kalbus GE (1996) Determination of carbon dioxide by titration: new experiments for general, physical, and quantitative analysis course. J Chem Educ 73(2):175–176. CrossRefGoogle Scholar
  13. Desphande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138(2):481–487. CrossRefGoogle Scholar
  14. El-Sayed AHMM, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeterior Biodegradation 37(1–2):69–79. CrossRefGoogle Scholar
  15. Esikova TZ, Akatova EV, Taran SA (2014) Bacteria that degrade low-molecular linear epsilon-caprolactam oligomers. Appl Biochem Microbiol 50(5):463–470. CrossRefGoogle Scholar
  16. Fang Y, Zhang LS, Wang J, Zhou Y, Ye BC (2017) Identification of the di-n-butyl phthalate-biodegrading strains and the biodegradation pathway in strain LMB-1. Appl Biochem Microbiol 53(3):310–317. CrossRefGoogle Scholar
  17. Gan HM, Chew TH, Tay YL, Lye FS, Yahya A (2012) Genome sequence of Hydrogenophaga sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium. J Bacteriol 194(17):4759–4760. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gurav R, Lyu H, Ma J, Tang J, Liu Q, Zhang H (2017) Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut R 24(12):11392–11403. CrossRefGoogle Scholar
  19. Hayashi T, Mokouyama M, Sakano K, Tani Y (1993) Degradation of a sodium acrylate oligomer by an Arthrobacter sp. Appl Environ Microbiol 59(5):1555–1559PubMedPubMedCentralGoogle Scholar
  20. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49(4):245–252. CrossRefGoogle Scholar
  21. Howard GT (2012) Polyurethane biodegradation. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer-Verlag, Heidelberg, pp 189–211Google Scholar
  22. Howard GT, Duos B, Watson E (2010) Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeterior Biodegradation 64(4):300–304. CrossRefGoogle Scholar
  23. Howard GT, Norton WN, Burks T (2012) Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation 23(4):561–573. CrossRefPubMedGoogle Scholar
  24. Jong KL, Woo JL, Yong-Ju C, Doo HF, Yong-Woo L, Jinwook C (2010) Variation of bacterial community immobilized in polyethylene glycol carrier during mineralization of xenobiotics analyzed by TGGE technique. Korean J Chem Eng 27(6):1816–1821. CrossRefGoogle Scholar
  25. Kato S, Chino K, Kamimura N, Masai E, Yumoto I, Kamagata Y (2015) Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep 5:14295. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kawai F (1993) Bacterial degradation of acrylic oligomers and polymers. Appl Microbiol Biotechnol 39:382–385. CrossRefGoogle Scholar
  27. Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74(9):1743–1759. CrossRefPubMedGoogle Scholar
  28. Klammsteiner T, Insam H, Probst M (2018) Microbiota in a cooling-lubrication circuit and an option for controlling triethanolamine biodegradation. Biofouling 34(5):519–531. CrossRefPubMedGoogle Scholar
  29. Larson RJ, Bookland EA, Williams RT, Yocom KM, Saucy DA, Freeman MB, Swift G (1997) Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. J Environ Polym Degrad 5(1):41–48. CrossRefGoogle Scholar
  30. L'Haridon S, Chalopin M, Colombo D, Toffin L (2014) Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N,N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int J Syst Evol Microbiol 64(Pt6):1978–1983. CrossRefPubMedGoogle Scholar
  31. Lovrien R, Matulis D (1995) Assays for total protein. In: Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (eds) Current protocols in protein science. John Wiley & Sons, Inc, New York, pp 3.4.4–3.4.24Google Scholar
  32. Mahajan N, Gupta P (2015) New insights into the microbial degradation of polyurethanes. RSC Adv 5:41839–41854. CrossRefGoogle Scholar
  33. Mai C, Schormann W, Majcherczyk A, Hüttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65(4):479–487. CrossRefPubMedGoogle Scholar
  34. McCarthy SJ, Meijs GF, Mitchell N, Gunatillake PA, Heath G, Brandwood A, Schindhelm K (1997) In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy. Biomaterials 18(21):1387–1409. CrossRefPubMedGoogle Scholar
  35. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedPubMedCentralGoogle Scholar
  36. Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129(1):39–42. CrossRefPubMedGoogle Scholar
  37. Oceguera-Cervantes A, Carrillo-García A, López N, Bolaños-Nuñez S, Cruz-Gómez MJ, Wacher C, Loza-Tavera H (2007) Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone. Appl Environ Microbiol 73(19):6214–6223. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Oprea S, Doroftei F (2011) Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum. Int Biodeterior Biodegradation 65(3):533–538. CrossRefGoogle Scholar
  39. Pardini OR, Amalvy JI (2008) FTIR, 1H-NMR spectra, and thermal characterization of water-based polyurethane/acrylic hybrids. J Appl Polym Sci 107:1207–1214. CrossRefGoogle Scholar
  40. Perruchon C, Pantoleon A, Veroutis D, Gallego-Blanco S, Martin-Laurent F, Liadaki K, Karpouzas DG (2017) Characterization of the biodegradation, bioremediation and detoxification capacity of a bacterial consortium able to degrade the fungicide thiabendazole. Biodegradation 28(5-6):383–394. CrossRefPubMedGoogle Scholar
  41. Rafiemanzelat F, Jafari M, Emtiazi G (2015) Study of biological degradation of new poly(ether-urethane-urea)s containing cyclopeptide moiety and PEG by Bacillus amyloliquefaciens isolated from soil. Appl Biochem Biotechnol 177(4):842–860. CrossRefPubMedGoogle Scholar
  42. Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodetrior Biodegradation 50(1):33–40. CrossRefGoogle Scholar
  43. Rusansky S, Avigad R, Michaeli S, Gutnick DL (1987) Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57. Appl Environ Microbiol 53(8):1918–1923PubMedPubMedCentralGoogle Scholar
  44. Shah AA, Hasan F, Akhter JI, Hameed A, Ahmed S (2008) Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann Microbiol 58:381–386. CrossRefGoogle Scholar
  45. Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24(6):865–877. CrossRefPubMedGoogle Scholar
  46. Shah Z, Gulzar M, Hasan F, Shah AA (2016) Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polym Degrad Stab 134:349–356. CrossRefGoogle Scholar
  47. Solís-González CJ, Domínguez-Malfavón L, Vargas-Suárez M, Gaytán I, Cevallos MA, Lozano L, Cruz-Gómez MJ, Loza-Tavera H (2018) Novel metabolic pathway for N-Methylpyrrolidone degradation in Alicycliphilus sp. BQ1 Appl Environ Microbiol 84(1): pii: e02136-17).
  48. Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the solid microbial community and removal of polycyclic aromatic hydrocarbons from and aged contaminated soil. Bioresour Technol 101(10):3437–3443. CrossRefPubMedGoogle Scholar
  49. Vogt C, Richnow HH (2014) Bioremediation via in situ microbial degradation of organic pollutants. Adv Biochem Eng Biotechnol 142:123–146. CrossRefPubMedGoogle Scholar
  50. Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123(3):582–593. CrossRefPubMedGoogle Scholar
  51. Wilske B, Bai M, Lindenstruth B, Bach M, Rezaie Z, Frede HG, Breuer L (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21(16):9453–9460. CrossRefGoogle Scholar
  52. Witte CP, Medina-Escobar N (2001) In-gel detection of urease with nitroblue tetrazolium and quantification of the enzyme from different crop plants using the indophenols reaction. Anal Biochem 290(1):102–107. CrossRefPubMedGoogle Scholar
  53. Zafar U, Houlden A, Robson GD (2013) Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol 79(23):7313–7324. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zaisheng Y, Yu Z, Huifang W, Mingzhong Y, Haichen Z, Zheng H, Helong J (2017) Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv 7(74):46690–46698. CrossRefGoogle Scholar
  55. Zhang J, Yin JG, Hang BJ, Cai S, He J, Zhou SG, Li SP (2012) Cloning of novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticide. Appl Environ Microb 78(14):4848–4855. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations