Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2571–2582 | Cite as

Industrial uses of phospholipases: current state and future applications

  • Sebastián Cerminati
  • Luciana Paoletti
  • Andrés Aguirre
  • Salvador Peirú
  • Hugo G. Menzella
  • María Eugenia CastelliEmail author


Phospholipids play a central role in all living organisms. Phospholipases, the enzymes aimed at modifying phospholipids, are consequently widespread in nature and play diverse roles, from lipid metabolism and cellular signaling in eukaryotes to virulence and nutrient acquisition in microbes. Phospholipases catalyze the hydrolysis of one or more ester or phosphodiester bonds of glycerophospholipids. The use of phospholipases with industrial purposes has constantly increased over the last 30 years. This demand is rapidly growing given the ongoing improvements in protein engineering and the reduction of enzymes manufacturing costs, making them suitable for industrial use. Here, a general overview of phopholipases A, B, C, and D and their industrial application is presented along with potential new uses for these enzymes. We draw attention to commercial phospholipases used to improve the emulsifying properties of products in the baking, egg, and dairy industries. On the other hand, the improvement of oil degumming by phospholipases is thoroughly analyzed. Moreover, recent developments in enzymatic biodiesel production and the use of phospholipases for the synthesis of phospholipids with pharmaceutical or nutritional value are reviewed.


Phospholipases Industrial enzymes Degumming Phospholipids 


Funding information

This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (PICT2015-0303 and 2015-2937) and from ASACTEI Santa Fe (IO2017-00053 and IO2017-00308), Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethical approval is required as no animals or humans have been used in the study.


  1. Aalrust E, Beyer W, Ottofrickenstein H, Penk G, Plainer H, Reiner R (1993) Enzymatic treatment of edible oils. Patent US5264367AGoogle Scholar
  2. Adrio J, Demain A (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aloulou A, Rahier R, Arhab Y, Noiriel A, Abousalham A (2018) Phospholipases: an overview. Methods Mol Biol 1835:69–105. CrossRefPubMedGoogle Scholar
  4. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta Mol Cell Biol Lipids 1781:513–518. CrossRefGoogle Scholar
  5. Argov N, Lemay DG, German JB (2008) Milk fat globule structure & function; nanosciece comes to milk production. Trends Food Sci Technol 19:617–623. CrossRefGoogle Scholar
  6. Arranz E, Corredig M (2017) Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J Dairy Sci 100:4213–4222. CrossRefPubMedGoogle Scholar
  7. Bitman J, Wood DL (1990) Changes in milk fat phospholipids during lactation. J Dairy Sci 73:1208–1216. CrossRefPubMedGoogle Scholar
  8. Boontiam W, Jung B, Kim YY (2017) Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poult Sci 96:593–601. CrossRefPubMedGoogle Scholar
  9. Borch K, Landvik S, Damstrup ML, Brask J (2013) Polypeptides having phospholipase a activity and polynucleotides encoding same. Patent US9670470B2Google Scholar
  10. Bornscheuer UT (2018) Enzymes in lipid modification. Annu Rev Food Sci Technol 9:85–103. CrossRefPubMedGoogle Scholar
  11. Campbell JS, te Bokkel DW, Thatcher KD (2002) Liquid egg yolk product comprising lysophospholipoprotein. Patent US6773731B2Google Scholar
  12. Casado V, Martin D, Torres C, Reglero G (2012) Phospholipases in food industry: a review. Methods Mol Biol 861:495–523. CrossRefPubMedGoogle Scholar
  13. Castello P, Jollet S, Potus J, Baret J-L, Nicolas J (1998) Effect of exogenous lipase on dough lipids during mixing of wheat flours. Cereal Chem 75:595–601. CrossRefGoogle Scholar
  14. Cerminati S, Eberhardt F, Elena CE, Peiru S, Castelli ME, Menzella HG (2017) Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme. Appl Microbiol Biotechnol 101:4471–4479. CrossRefPubMedGoogle Scholar
  15. Cerminati S, Paoletti L, Peiru S, Menzella H, Castelli M (2018) The beta/gamma-Crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability. Appl Microbiol Biotechnol 102:6997–7005. CrossRefPubMedGoogle Scholar
  16. Cesarini S, Haller RF, Diaz P, Nielsen PM (2014) Combining phospholipases and a liquid lipase for one-step biodiesel production using crude oils. Biotechnol Biofuels 7:29. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen W, Guo W, Gao F, Chen L, Chen S, Li D (2017) Phospholipase A1-catalysed synthesis of docosahexaenoic acid-enriched phosphatidylcholine in reverse micelles system. Appl Biochem Biotechnol 182:1037–1052. CrossRefPubMedGoogle Scholar
  18. Ciofalo V, Barton N, Kreps J, Coats I, Shanahan D (2006) Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul Toxicol Pharmacol 45:1–8. CrossRefPubMedGoogle Scholar
  19. Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340.<333::aid-ejlt333>;2-f CrossRefGoogle Scholar
  20. Daimer K, Kulozik U (2008) Impact of a treatment with phospholipase A2 on the physicochemical properties of hen egg yolk. J Agric Food Chem 56:4172–4180. CrossRefPubMedGoogle Scholar
  21. Damnjanovic J, Iwasaki Y (2013) Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. J Biosci Bioeng 116:271–280. CrossRefPubMedGoogle Scholar
  22. De Maria L, Vind J, Oxenboll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300. CrossRefPubMedGoogle Scholar
  23. Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492. CrossRefPubMedGoogle Scholar
  24. Derez FG, De Sadeleer JW, Reeve AL (1990) Carbohydrate refining process and novel enzyme compositions suitable for use therein. Patent US4916064AGoogle Scholar
  25. Dijkstra AJ (2011) Enzymatic degumming. Lipid Technol 23:36–38. CrossRefGoogle Scholar
  26. Dijkstra AJ (2013) Degumming. In: Edible Oil Processing from a Patent Perspective. Springer US, pp 121–155.
  27. Dijkstra AJ (2018) Enzymatic gum treatment. In: Bornscheuer UT (ed) Lipid Modification by Enzymes and Engineered Microbes. Elsevier, pp 157–175Google Scholar
  28. Dutilh CE, Groger W (1981) Improvement of product attributes of mayonnaise by enzymic hydrolysis of egg yolk with phospholipase A2. J Sci Food Agric 32:451–458. CrossRefGoogle Scholar
  29. Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 5:21. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Elena C, Ravasi P, Cerminati S, Peiru S, Castelli ME, Menzella HG (2016) Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem 51:1935–1944. CrossRefGoogle Scholar
  31. Elena C, Cerminati S, Ravasi P, Rasia R, Peiru S, Menzella HG, Castelli ME (2017) B. cereus phospholipase C engineering for efficient degumming of vegetable oil. Process Biochem 54:67–72. CrossRefGoogle Scholar
  32. Erickson DR (1990) Edible fats and oils processing: basic principles and modern practices: world conference proceedings. American Oil Chemists Society, IllinoisGoogle Scholar
  33. Fatum T, Higgins D (2008) Process for producing cheese. Patent US20080299252A1Google Scholar
  34. Ferreiro T, Martinez S, Gayoso L, Rodriguez-Otero JL (2016) Evolution of phospholipid contents during the production of quark cheese from buttermilk. J Dairy Sci 99:4154–4159. CrossRefPubMedGoogle Scholar
  35. Flores-Díaz M, Monturiol-Gross L, Naylor C, Alape-Girón A, Flieger A (2016) Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol Mol Biol Rev 80:597–628. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Frazzetto G (2003) White biotechnology. EMBO Rep 4:835–837. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gan Z, Ellis PR, Schofield JD (1995) Gas cell stabilisation and gas retention in wheat bread dough. J Cereal Sci 21:215–230. CrossRefGoogle Scholar
  38. Garcia H, Kim I-H, Lopez-Hernandez A, Hill CG Jr (2008) Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas Aceites 59:368–374. CrossRefGoogle Scholar
  39. Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16:12–30. CrossRefGoogle Scholar
  40. Govindasamy-Lucey S, Lin T, Jaeggi JJ, Johnson ME, Lucey JA (2006) Influence of condensed sweet cream buttermilk on the manufacture, yield, and functionality of pizza cheese. J Dairy Sci 89:454–467. CrossRefPubMedGoogle Scholar
  41. Gupta M (2017) Practical guide to vegetable oil processing. Elsevier Science, LinwoodGoogle Scholar
  42. Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678. CrossRefPubMedGoogle Scholar
  43. Hama S, Ogino C, Kondo A (2015) Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biotechnol 99:7879–7891. CrossRefPubMedGoogle Scholar
  44. Hama S, Noda H, Kondo A (2018) How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 50:57–64. CrossRefPubMedGoogle Scholar
  45. Hammond EG, Johnson LA, Su C, Wang T, White PJ (2005) Soybean oil. In: Bailey’s Industrial Oil and Fat Products. Wiley.
  46. Hansen S, Hough E, Svensson LA, Wong YL, Martin SF (1993) Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog. J Mol Biol 234:179–187. CrossRefPubMedGoogle Scholar
  47. Higgins D, Soerensen TL, Fatum TM, Nielsen PM, Guldager HS (2009) Method for producing ice cream. Patent US20090291166A1Google Scholar
  48. Hille JDR, Parnell MD (2001) Bread improver comprising bile salt and phospholipase A. Patent WO2001047363A1Google Scholar
  49. Hong S, Kim Y, Kim C-T, Kim I-H (2011) Enzymatic synthesis of lysophosphatidylcholine containing CLA from sn-glycero-3-phosphatidylcholine (GPC) under vacuum. Food Chem 129:1–6. CrossRefGoogle Scholar
  50. Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature 338:357–360. CrossRefPubMedGoogle Scholar
  51. Karaca OB, Guven M (2018) Effects of proteolytic and lipolytic enzyme supplementations on lipolysis and proteolysis characteristics of white cheeses. Foods 7:125–139. CrossRefPubMedCentralGoogle Scholar
  52. Kim JH, Yoon SH (2014) Effects of organic solvents on transesterification of phospholipids using phospholipase A2 and lipase. Food Sci Biotechnol 23:1207–1211. CrossRefGoogle Scholar
  53. Kim I-H, Garcia HS, Hill CG (2007) Phospholipase A1-catalyzed synthesis of phospholipids enriched in n−3 polyunsaturated fatty acid residues. Enzym Microb Technol 40:1130–1135. CrossRefGoogle Scholar
  54. Kim I-H, Garcia H, Hill C (2010) Synthesis of Structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A1. J Am Oil Chem Soc 87(11):1293–1299. CrossRefGoogle Scholar
  55. Kooijman EE, Burger KNJ (2009) Biophysics and function of phosphatidic acid: a molecular perspective. Biochim Biophys Acta Mol Cell Biol Lipids 1791:881–888. CrossRefGoogle Scholar
  56. Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M (1999) Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [13C]DHA in phosphatidylcholine. J Lipid Res 40:1867–1874PubMedGoogle Scholar
  57. Li R, Pande G, Sabir JSM, Baeshen NA, Akoh CC (2014) Enrichment of refined olive oil with palmitic and docosahexaenoic acids to produce a human Milk fat analogue. J Am Oil Chem Soc 91:1377–1385. CrossRefGoogle Scholar
  58. Li Y, Du W, Liu D (2015) Efficient biodiesel production from phospholipids-containing oil: synchronous catalysis with phospholipase and lipase. Biochem Eng J 94:45–49. CrossRefGoogle Scholar
  59. Lilbaek HM, Broe ML, Hoier E, Fatum TM, Ipsen R, Sorensen NK (2006) Improving the yield of mozzarella cheese by phospholipase treatment of milk. J Dairy Sci 89:4114–4125. CrossRefPubMedGoogle Scholar
  60. Lilbaek HM, Fatum TM, Ipsen R, Sorensen NK (2007) Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. J Agric Food Chem 55:2970–2978. CrossRefPubMedGoogle Scholar
  61. Liu X, Shiihara M, Taniwaki N, Shirasaka N, Atsumi Y, Shiojiri M (2015) Phosphatidylserine: biology, technologies, and applications. In: Ahmad MU, Xu X (eds) Polar lipids. Elsevier, pp 145–184.
  62. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. CrossRefGoogle Scholar
  63. Mastenbroek J, Dirk J, Hille R, Sein A, Terdu AG (2007) Method to produce cake. Patent US9615587B2Google Scholar
  64. Matser AM, Steeneken PA (1998) Origins of the poor filtration characteristics of wheat starch hydrolysates. Cereal Chem 75:289–293. CrossRefGoogle Scholar
  65. Mishra A, Krishnan B, Srivastava SS, Sharma Y (2014) Microbial betagamma-crystallins. Prog Biophys Mol Biol 115:42–51. CrossRefPubMedGoogle Scholar
  66. Monfort A, Blasco A, Sanz P, Prieto JA (1999) Expression of LIP1 and LIP2 genes from geotrichum species in baker’s yeast strains and their application to the bread-making process. J Agric Food Chem 47:803–808. CrossRefPubMedGoogle Scholar
  67. Muallem S, Chung WY, Jha A, Ahuja M (2017) Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep 18:1893–1904. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Nguyen KQ, Marschner V, Titze K, Winter B (2013) Cloning, expression and use of acid lysophospholipases. Patent US8507241B2Google Scholar
  69. Nielsen EW (2004) Principles of cheese production. In: Hui YH, Meunier-Goddik L, Josephsen J, Nip W-K, Stanfield PS (eds) Handbook of Food and Beverage Fermentation Technology. Marcel Dekker, New York, pp 221–239Google Scholar
  70. Nielsen PM (2005) Process for producing cheese. Patent US6875454B2Google Scholar
  71. Nielsen PM, Lilbaek H (2012) Method for producing fractions of a milk composition. Patent US8226995Google Scholar
  72. O’brien RD (2009) Fats and oils: formulating and processing for applications. Taylor and Francis, Boca RatonGoogle Scholar
  73. Ochoa AA, Hernández-Becerra JA, Cavazos-Garduño A, García HS, Vernon-Carter EJ (2013) Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A1-catalyzed acidolysis. Biotechnol Prog 29:230–236. CrossRefPubMedGoogle Scholar
  74. Park CW, Kwon SJ, Han JJ, Rhee JS (2000) Transesterification of phosphatidylcholine with eicosapentaenoic acid ethyl ester using phospholipase A2 in organic solvent. Biotechnol Lett 22:147–150. CrossRefGoogle Scholar
  75. Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20:227–243. CrossRefPubMedGoogle Scholar
  76. Piazza GJ, Marmer WN (2007) Conversion of phosphatidylcholine to phosphatidylglycerol with phospholipase D and glycerol. J Am Oil Chem Soc 84:645–651. CrossRefGoogle Scholar
  77. Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MA (2015) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:511–525. CrossRefPubMedGoogle Scholar
  78. Prabhasankar P, Vijaya Kumar M, Lokesh BR, Haridas Rao P (2000) Distribution of free lipids and their fractions in wheat flour milled streams. Food Chem 71:97–103. CrossRefGoogle Scholar
  79. Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 164:991–1022. CrossRefPubMedGoogle Scholar
  80. Ravasi P, Braia M, Eberhardt F, Elena C, Cerminati S, Peiru S, Castelli ME, Menzella HG (2015) High-level production of Bacillus cereus phospholipase C in Corynebacterium glutamicum. J Biotechnol 216:142–148. CrossRefPubMedGoogle Scholar
  81. Rittig F (2004) Lipopan F BG-unlocking the natural strengthening potential in dough. In: Using Cereal Science and Technology for the Benefit of Consumers: Proceedings of the 12th International ICC Cereal and Bread Congress 24–26 May, 2004. CRC Press, p 147Google Scholar
  82. Rombaut R, Camp JV, Dewettinck K (2005) Analysis of phospho- and sphingolipids in dairy products by a new HPLC method. J Dairy Sci 88:482–488. CrossRefPubMedGoogle Scholar
  83. Ross AS, MacRitchie F (1995) Interactions of wheat proteins, carbohydrates, and lipids. In: Gaonkar AG (ed) Ingredient interactions: effects on food quality. CRC Press, New York/Basel/Hong Kong, pp 321–356Google Scholar
  84. Rossmeisl M, Jelenik T, Jilkova Z, Slamova K, Kus V, Hensler M, Medrikova D, Povysil C, Flachs P, Mohamed-Ali V, Bryhn M, Berge K, Holmeide AK, Kopecky J (2009) Prevention and reversal of obesity and glucose intolerance in mice by DHA derivatives. Obesity 17:1023–1031. CrossRefPubMedGoogle Scholar
  85. Rossmeisl M, Jilkova ZM, Kuda O, Jelenik T, Medrikova D, Stankova B, Kristinsson B, Haraldsson GG, Svensen H, Stoknes I, Sjovall P, Magnusson Y, Balvers MG, Verhoeckx KC, Tvrzicka E, Bryhn M, Kopecky J (2012) Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PLoS One 7:e38834. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ryan T, Bamm VV, Stykel MG, Coackley CL, Humphries KM, Jamieson-Williams R, Ambasudhan R, Mosser DD, Lipton SA, Harauz G, Ryan SD (2018) Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat Commun 9:817–817. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288. CrossRefPubMedGoogle Scholar
  88. Schmitt H, Heirman M (2007) Enzymatic modification of lecithin. Patent US7189544B2Google Scholar
  89. Shnigir VM, Kisel’ MA (2004) Transformation of phospholipids by cabbage phospholipase D in mixed micelles containing 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate. Appl Biochem Microbiol 40:225–230. CrossRefGoogle Scholar
  90. Søe JB, Mikkelson JD, De Kreij A (2011) Variant lipid acyltransferases and methods of making. Patent US7906307B2Google Scholar
  91. Soerensen JS, Mikkelsen R, Horsmans C, Karsten P, Kragh M (2010) Enzymatic generation of functional lipids from cereals or cereal bi-streams.Patent US9370193B2Google Scholar
  92. Srivastava SS, Jamkhindikar AA, Raman R, Jobby MK, Chadalawada S, Sankaranarayanan R, Sharma Y (2017) A transition metal-binding, trimeric betagamma-Crystallin from methane-producing thermophilic archaea, Methanosaeta thermophila. Biochem 56:1299–1310. CrossRefGoogle Scholar
  93. Strahl H, Errington J (2017) Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 71:519–538. CrossRefPubMedGoogle Scholar
  94. Subbaiah PV, Dammanahalli KJ, Yang P, Bi J, O’Donnell JM (2016) Enhanced incorporation of dietary DHA into lymph phospholipids by altering its molecular carrier. Biochim Biophys Acta 8:723–729. CrossRefGoogle Scholar
  95. Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST (2018) Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front Mol Neurosci 11:10. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ulbrich-Hofmann R, Lerchner A, Oblozinsky M, Bezakova L (2005) Phospholipase D and its application in biocatalysis. Biotechnol Lett 27:535–544. CrossRefPubMedGoogle Scholar
  97. Van Dyck SM, Vennekens B, Coppens B, Nuyens F (2013) Hydrolyzed lecithin product to improve digestibility. Patent US8603568B2Google Scholar
  98. van Oort M (2009) Enzymes in bread making. In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford, pp 103–143. CrossRefGoogle Scholar
  99. Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278. CrossRefPubMedGoogle Scholar
  100. Wen M, Ding L, Zhang L, Zhou M, Xu J, Wang J, Wang Y-m, Xue C (2016) DHA-PC and DHA-PS improved Aβ1–40 induced cognitive deficiency uncoupled with an increase in brain DHA in rats. J Funct Foods 22:417–430. CrossRefGoogle Scholar
  101. Xie M, Dunford NT (2017) Lipid composition and emulsifying properties of canola lecithin from enzymatic degumming. Food Chem 218:159–164. CrossRefPubMedGoogle Scholar
  102. Yamamoto T, Juneja LR, Hatta H, Kim M (2018) Hen eggs: basic and applied science. CRC Press, Boca RatonCrossRefGoogle Scholar
  103. Yang SF, Freer S, Benson AA (1967) Transphosphatidylation by phospholipase D. J Biol Chem 242:477–484PubMedGoogle Scholar
  104. Yang JG, Wang YH, Yang B, Mainda G, Guo Y (2006) Degumming of vegetable oil by a new microbial lipase. Food Technol Biotechnol 44:101–104Google Scholar
  105. Yang Y, Lee M, Fairn GD (2018) Phospholipid subcellular localization and dynamics. J Biol Chem 293:6230–6240. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zhang F, Koseoglu SS, Rhee KC (1994) Effects of expander process on the phospholipids in soybean oil. J Am Oil Chem Soc 71:1145–1148. CrossRefGoogle Scholar
  107. Zhao T, No DS, Kim BH, Garcia HS, Kim Y, Kim I-H (2014) Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n−3 polyunsaturated fatty acid. Food Chem 157:132–140. CrossRefPubMedGoogle Scholar
  108. Zhou W-B, Gong J-S, Hou H-J, Li H, Lu Z-M, Xu H-Y, Xu Z-H, Shi J-S (2017) Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine. Bioengineered 9:80–89. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), CONICET; y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)RosarioArgentina

Personalised recommendations