Advertisement

Streptococcus macedonicus strains isolated from traditional fermented milks: resistance to gastrointestinal environment and adhesion ability

  • Tedj El Moulouk Khaldi
  • Mounira Kebouchi
  • Claire Soligot
  • Mohamed Amine Gomri
  • Karima Kharroub
  • Yves Le Roux
  • Emeline RouxEmail author
Applied microbial and cell physiology
  • 47 Downloads

Abstract

In this study, Streptococcus macedonicus (S. macedonicus) strains were identified from Algerian traditional fermented milks (Lben and Rayeb). Important prerequisites of probiotic interest such as acidity, bile salts tolerance, and adhesion ability to epithelial cells were investigated. A combination of phenotypic (ability to grow on Bile Esculin Azide medium, BEA; on high salt content medium NaCl 6.5%; on alkaline medium pH 9.6) and genotypic approaches (16S rRNA, ITS genes sequencing and MLST technique) allowed to identify four genetically distinct strains of S. macedonicus. These four strains and two references, Streptococcus thermophilus LMD-9 and Lactobacillus rhamnosus GG (LGG), were tested for their capacity to survive at low pH values, and at different concentrations of an equimolar bile salts mixture (BSM). Two different cell lines, Caco-2 TC7 and HT29-MTX, were used for the adhesion study. The results show that S. macedonicus strains selected constitute a distinct genetic entity from the Greek strain S. macedonicus ACA-DC-198. They were able to survive up to pH 3 and could tolerate high concentrations of bile salts (10 mM), unlike LMD-9 and LGG strains. Our strains also display in vitro adhesion similar to the LGG strain on Caco-2 TC7 and higher adhesion than the LMD-9 strain to Caco-2 TC7 and HT29-MTX cell models. This first characterization allows considering S. macedonicus as a potential candidate for possible probiotic effects that need to be investigated.

Keywords

Streptococcus macedonicus Multilocus sequence typing (MLST) Gastrointestinal tract Bile salts Adhesion Epithelial cells 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9651_MOESM1_ESM.pdf (467 kb)
Table S1 (PDF 466 kb)

References

  1. Anastasiou R, Aktypis A, Georgalaki M, Papadelli M, De Vuyst L, Tsakalidou E (2009) Inhibition of Clostridium tyrobutyricum by Streptococcus macedonicus ACA-DC 198 under conditions mimicking kasseri cheese production and ripening. Int Dairy J 19:330–335.  https://doi.org/10.1016/j.idairyj.2008.12.001 CrossRefGoogle Scholar
  2. Bajor A, Gillberg P-G, Abrahamsson H (2010) Bile acids: short and long term effects in the intestine. Scand J Gastroenterol 45:645–664.  https://doi.org/10.3109/00365521003702734 CrossRefGoogle Scholar
  3. Bensalah F, Delorme C, Renault P (2009) Characterisation of thermotolerant cocci from indigenous flora of “Leben” in Algerian arid area and DNA identification of atypical Lactococcus lactis strains. Curr Microbiol 59:139–146.  https://doi.org/10.1007/s00284-009-9411-1 CrossRefGoogle Scholar
  4. Blaiotta G, La Gatta B, Di Capua M, Di Luccia A, Coppola R, Aponte M (2013) Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiol 36:161–169.  https://doi.org/10.1016/j.fm.2013.05.002 CrossRefGoogle Scholar
  5. Boleij A, Schaeps RMJ, de Kleijn S, Hermans PW, Glaser P, Pancholi V, Swinkels DW, Tjalsma H (2009) Surface-exposed histone-like protein a modulates adherence of Streptococcus gallolyticus to colon adenocarcinoma cells. Infect Immun 77:5519–5527.  https://doi.org/10.1128/IAI.00384-09 CrossRefGoogle Scholar
  6. Boleij A, Muytjens CMJ, Bukhari SI, Cayet N, Glaser P, Hermans PWM, Swinkels DW, Bolhuis A, Tjalsma H (2011) Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer. J Infect Dis 203:1101–1109.  https://doi.org/10.1093/infdis/jiq169 CrossRefGoogle Scholar
  7. Chae JP, Valeriano VD, Kim G-B, Kang D-K (2013) Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01. J Appl Microbiol 114:121–133.  https://doi.org/10.1111/jam.12027 CrossRefGoogle Scholar
  8. Chen X, Sun Z, Meng H, Zhang H (2009) The acid tolerance association with expression of H+ - ATPase in Lactobacillus casei. Int J Dairy Technol 62:272–276.  https://doi.org/10.1111/j.1471-0307.2009.00461.x CrossRefGoogle Scholar
  9. Cho S-A, Kim K-S, Do J-R, Kim S-H, Lim S-D (2010) Physiological characteristics and immunomodulating activity of Streptococcus macedonicus LC743 isolated from raw milk. Korean J Food Sci Anim Resour 30:957–965.  https://doi.org/10.5851/kosfa.2010.30.6.957 CrossRefGoogle Scholar
  10. Cho S-A, Kim K-S, Lim S-D (2012) Effects of mozzarella cheese manufactured by S. macedonicus LC743 on the immune status of mouse. Korean J Food Sci Anim Resour 32:40–44.  https://doi.org/10.5851/kosfa.2012.32.1.40 CrossRefGoogle Scholar
  11. Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli P, Fernandes I, Gomez J, Gomez R, Kalantzopoulos G, Ledda A, Medina M, Rea MC, Rodriguez E (1997) Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 64:409–421CrossRefGoogle Scholar
  12. Colmin C, Pebay M, Simonet JM, Decaris B (1991) A species-specific DNA probe obtained from Streptococcus salivarius subsp. thermophilus detects strain restriction polymorphism. FEMS Microbiol Lett 65:123–128CrossRefGoogle Scholar
  13. Delorme C, Poyart C, Ehrlich SD, Renault P (2007) Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 189:1330–1341.  https://doi.org/10.1128/JB.01058-06 CrossRefGoogle Scholar
  14. Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P (2010) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76:451–460.  https://doi.org/10.1128/AEM.01018-09 CrossRefGoogle Scholar
  15. De Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 18:476–485.  https://doi.org/10.1016/j.idairyj.2007.10.006
  16. Dufour D, Nicodème M, Perrin C, Driou A, Brusseaux E, Humbert G, Gaillard J-L, Dary A (2008) Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. Int J Food Microbiol 125:188–196.  https://doi.org/10.1016/j.ijfoodmicro.2008.04.004 CrossRefGoogle Scholar
  17. EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to article 13(1) of regulation (EC) no 1924/2006. EFSA J 8:1763 (p1–18)Google Scholar
  18. El-Sharoud WM, Delorme C, Darwish MS, Renault P (2012) Genotyping of Streptococcus thermophilus strains isolated from traditional Egyptian dairy products by sequence analysis of the phosphoserine phosphatase (serB) gene with phenotypic characterizations of the strains. J Appl Microbiol 112:329–337.  https://doi.org/10.1111/j.1365-2672.2011.05212.x CrossRefGoogle Scholar
  19. Fang F, Li Y, Bumann M, Raftis EJ, Casey PG, Cooney JC, Walsh MA, O’Toole PW (2009) Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol 191:5743–5757.  https://doi.org/10.1128/JB.00506-09 CrossRefGoogle Scholar
  20. FDA (2002) GRN No.49 Bifidobacterium lactis strain Bb12 and Streptococcus thermophilus strain Th4. GRAS Not InventoryGoogle Scholar
  21. FDA (2012) GRN No.378 Cultured [dairy sources, sugars, wheat, malt, and fruit- and vegetable based sources] fermented by [Streptococcus thermophilus, Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus sakei, Lactobacillus bulgaricus and Propionibacterium freudenreichii subsp. shermanii or mixtures of these strains]. GRAS Not InventoryGoogle Scholar
  22. Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767.  https://doi.org/10.3390/ijerph110504745 CrossRefGoogle Scholar
  23. Georgalaki MD, Van den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, De Vuyst L, Tsakalidou E (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl Environ Microbiol 68:5891–5903.  https://doi.org/10.1128/AEM.68.12.5891-5903.2002 CrossRefGoogle Scholar
  24. Georgalaki M, Papadimitriou K, Anastasiou R, Pot B, Van Driessche G, Devreese B, Tsakalidou E (2013) Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Food Microbiol 33:124–130.  https://doi.org/10.1016/j.fm.2012.09.008 CrossRefGoogle Scholar
  25. Grazia SE, Sumayyah S, Haiti FS, Sahlan M, Heng NCK, Malik A (2017) Bacteriocin-like inhibitory substance (BLIS) activity of Streptococcus macedonicus MBF10-2 and its synergistic action in combination with antibiotics. Asian Pac J Trop Med 10:1140–1145.  https://doi.org/10.1016/j.apjtm.2017.11.001 CrossRefGoogle Scholar
  26. Iyer R, Tomar SK, Uma Maheswari T, Singh R (2010) Streptococcus thermophilus strains: multifunctional lactic acid bacteria. Int Dairy J 20:133–141.  https://doi.org/10.1016/j.idairyj.2009.10.005 CrossRefGoogle Scholar
  27. Jans C, Meile L, Lacroix C, Stevens MJA (2015) Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 33:419–436.  https://doi.org/10.1016/j.meegid.2014.09.017 Google Scholar
  28. Jans C, de Wouters T, Bonfoh B, Lacroix C, Kaindi DWM, Anderegg J, Böck D, Vitali S, Schmid T, Isenring J, Kurt F, Kogi-Makau W, Meile L (2016) Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiol 16:117.  https://doi.org/10.1186/s12866-016-0735-2 CrossRefGoogle Scholar
  29. Junjua M, Kechaou N, Chain F, Awussi AA, Roussel Y, Perrin C, Roux E, Langella P, Bermúdez-Humarán LG, Le Roux Y, Chatel J-M, Dary-Mourot A (2016) A large scale in vitro screening of Streptococcus thermophilus strains revealed strains with a high anti-inflammatory potential. LWT Food Sci Technol 70:78–87.  https://doi.org/10.1016/j.lwt.2016.02.006 CrossRefGoogle Scholar
  30. Kebouchi M, Galia W, Genay M, Soligot C, Lecomte X, Awussi AA, Perrin C, Roux E, Dary-Mourot A, Le Roux Y (2016) Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance. Appl Microbiol Biotechnol 100:3667–3679.  https://doi.org/10.1007/s00253-016-7322-1 CrossRefGoogle Scholar
  31. Kostman JR, Edlind TD, LiPuma JJ, Stull TL (1992) Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol 30:2084–2087Google Scholar
  32. Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123.  https://doi.org/10.1016/j.anaerobe.2015.03.004 CrossRefGoogle Scholar
  33. Kurmann JA, Rasic JL, Kroger M (1992) Encyclopedia of fermented fresh milk products. Van Nostrand Reinhold, New York, NY, USAGoogle Scholar
  34. Laiño JE, Zelaya H, Juárez del Valle M, Savoy de Giori G, LeBlanc JG (2015) Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. J Funct Foods 17:22–32.  https://doi.org/10.1016/j.jff.2015.04.055 CrossRefGoogle Scholar
  35. Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50:6334–6343Google Scholar
  36. Lombardi A, Gatti M, Rizzotti L, Torriani S, Andrighetto C, Giraffa G (2004) Characterization of Streptococcus macedonicus strains isolated from artisanal Italian raw milk cheeses. Int Dairy J 14:967–976.  https://doi.org/10.1016/j.idairyj.2004.04.005 CrossRefGoogle Scholar
  37. Maragkoudakis PA, Papadelli M, Georgalaki M, Panayotopoulou EG, Martinez-Gonzalez B, Mentis AF, Petraki K, Sgouras DN, Tsakalidou E (2009) In vitro and in vivo safety evaluation of the bacteriocin producer Streptococcus macedonicus ACA-DC 198. Int J Food Microbiol 133:141–147.  https://doi.org/10.1016/j.ijfoodmicro.2009.05.012 CrossRefGoogle Scholar
  38. Martins M, Aymeric L, du Merle L, Danne C, Robbe-Masselot C, Trieu-Cuot P, Sansonetti P, Dramsi S (2015) Streptococcus gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J Infect Dis 212:1646–1655.  https://doi.org/10.1093/infdis/jiv307 CrossRefGoogle Scholar
  39. Mokoena MP, Mutanda T, Olaniran AO (2016) Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food Nutr Res 60:29630.  https://doi.org/10.3402/fnr.v60.29630 CrossRefGoogle Scholar
  40. Mora D, Ricci G, Guglielmetti S, Daffonchio D, Fortina MG (2003) 16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSCP analysis for their identification. Microbiology 149:807–813CrossRefGoogle Scholar
  41. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15.  https://doi.org/10.1111/j.1574-6968.2012.02593.x CrossRefGoogle Scholar
  42. Papadelli M, Karsioti A, Anastasiou R, Georgalaki M, Tsakalidou E (2007) Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 272:75–82.  https://doi.org/10.1111/j.1574-6968.2007.00740.x CrossRefGoogle Scholar
  43. Papadimitriou K, Ferreira S, Papandreou NC, Mavrogonatou E, Supply P, Pot B, Tsakalidou E (2012) Complete genome sequence of the dairy isolate Streptococcus macedonicus ACA-DC 198. J Bacteriol 194:1838–1839.  https://doi.org/10.1128/JB.06804-11 CrossRefGoogle Scholar
  44. Papadimitriou K, Anastasiou R, Mavrogonatou E, Blom J, Papandreou NC, Hamodrakas SJ, Ferreira S, Renault P, Supply P, Pot B, Tsakalidou E (2014) Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genomics 15:272.  https://doi.org/10.1186/1471-2164-15-272 CrossRefGoogle Scholar
  45. Papadimitriou K, Mavrogonatou E, Bolotin A, Tsakalidou E, Renault P (2016) Whole-genome sequence of the cheese isolate Streptococcus macedonicus 679. Genome Announc 4:e01025–e01016.  https://doi.org/10.1128/genomeA.01025-16 CrossRefGoogle Scholar
  46. Pieterse R, Todorov SD, Dicks LMT (2008) Bacteriocin ST91KM, produced by Streptococcus gallolyticus subsp. macedonicus ST91KM, is a narrow-spectrum peptide active against bacteria associated with mastitis in dairy cattle. Can J Microbiol 54:525–531.  https://doi.org/10.1139/w08-040 CrossRefGoogle Scholar
  47. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line caco-2 in culture. Biol Cell 47:323–330Google Scholar
  48. Poyart C, Quesne G, Trieu-Cuot P (2002) Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of “Streptococcus infantarius subsp. coli” as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol 52:1247–1255.  https://doi.org/10.1099/00207713-52-4-1247 Google Scholar
  49. Reale A, Di Renzo T, Rossi F, Zotta T, Iacumin L, Preziuso M, Parente E, Sorrentino E, Coppola R (2015) Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT Food Sci Technol 60:721–728.  https://doi.org/10.1016/j.lwt.2014.10.022 CrossRefGoogle Scholar
  50. Ripamonti B, Agazzi A, Bersani C, De Dea P, Pecorini C, Pirani S, Rebucci R, Savoini G, Stella S, Stenico A, Tirloni E, Domeneghini C (2011) Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts. Anaerobe 17:97–105.  https://doi.org/10.1016/j.anaerobe.2011.05.001 CrossRefGoogle Scholar
  51. Rodríguez C (2010) Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis. World J Gastroenterol 16:1622.  https://doi.org/10.3748/wjg.v16.i13.1622 CrossRefGoogle Scholar
  52. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396.  https://doi.org/10.3389/fmicb.2013.00396 CrossRefGoogle Scholar
  53. Savaiano DA (2014) Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 99:1251S–1255S.  https://doi.org/10.3945/ajcn.113.073023 CrossRefGoogle Scholar
  54. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A (2003) Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol 53:631–645.  https://doi.org/10.1099/ijs.0.02361-0 CrossRefGoogle Scholar
  55. Shibata Y, Tien LHT, Nomoto R, Osawa R (2014) Development of a multilocus sequence typing scheme for Streptococcus gallolyticus. Microbiology 160:113–122.  https://doi.org/10.1099/mic.0.071605-0 CrossRefGoogle Scholar
  56. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  57. Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813Google Scholar
  58. Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31:571–576.  https://doi.org/10.1007/s10529-008-9902-3 CrossRefGoogle Scholar
  59. Tiwari P, Misra AK (2008) Synthesis of oligosaccharide fragments corresponding to the exopolysaccharide released by Streptococcus macedonicus Sc 136. Glycoconj J 25:85–99.  https://doi.org/10.1007/s10719-007-9056-x CrossRefGoogle Scholar
  60. Treu L, de Diego-Díaz B, Papadimitriou K, Tsakalidou E, Giacomini A, Corich V (2017) Whole-genome sequences of three Streptococcus macedonicus strains isolated from Italian cheeses in the Veneto region. Genome Announc 5:e01358–e01317.  https://doi.org/10.1128/genomeA.01358-17 CrossRefGoogle Scholar
  61. Tsakalidou E, Manolopoulou E, Kabaraki E, Zoidou E, Pot B, Kersters K, Kalantzopoulos G (1994) The combined use of whole-cell protein extracts for the identification (SDS-PAGE) and enzyme activity screening of lactic acid bacteria isolated from traditional Greek dairy products. Syst Appl Microbiol 17:444–458.  https://doi.org/10.1016/S0723-2020(11)80062-7 CrossRefGoogle Scholar
  62. Tsakalidou E, Zoidou E, Pot B, Wassill L, Ludwig W, Devriese LA, Kalantzopoulos G, Schleifer KH, Kersters K (1998) Identification of streptococci from Greek kasseri cheese and description of Streptococcus macedonicus sp. nov. Int J Syst Bacteriol 48(Pt 2):519–527.  https://doi.org/10.1099/00207713-48-2-519 CrossRefGoogle Scholar
  63. Turpin W, Humblot C, Noordine M-L, Thomas M, Guyot J-P (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS One 7:e38034.  https://doi.org/10.1371/journal.pone.0038034 CrossRefGoogle Scholar
  64. Uroić K, Novak J, Hynönen U, Pietilä TE, Leboš Pavunc A, Kant R, Kos B, Palva A, Šušković J (2016) The role of S-layer in adhesive and immunomodulating properties of probiotic starter culture Lactobacillus brevis D6 isolated from artisanal smoked fresh cheese. LWT Food Sci Technol 69:623–632.  https://doi.org/10.1016/j.lwt.2016.02.013 CrossRefGoogle Scholar
  65. Vendramin V, Treu L, Bovo B, Campanaro S, Corich V, Giacomini A (2014) Whole-genome sequence of Streptococcus macedonicus strain 33MO, isolated from the curd of morlacco cheese in the Veneto region (Italy). Genome Announc 2:e00746–e00714.  https://doi.org/10.1128/genomeA.00746-14 CrossRefGoogle Scholar
  66. Vincent SJF, Faber EJ, Neeser J-R, Stingele F, Kamerling JP (2001) Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology 11:131–139.  https://doi.org/10.1093/glycob/11.2.131 CrossRefGoogle Scholar
  67. Zielińska D, Kolożyn-Krajewska D (2018) Food-origin lactic acid bacteria may exhibit probiotic properties: review. Biomed Res Int 2018:1–15.  https://doi.org/10.1155/2018/5063185 CrossRefGoogle Scholar
  68. Zoumpopoulou G, Foligne B, Christodoulou K, Grangette C, Pot B, Tsakalidou E (2008) Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int J Food Microbiol 121:18–26.  https://doi.org/10.1016/j.ijfoodmicro.2007.10.013 CrossRefGoogle Scholar
  69. Zoumpopoulou G, Pepelassi E, Papaioannou W, Georgalaki M, Maragkoudakis P, Tarantilis P, Polissiou M, Tsakalidou E, Papadimitriou K (2013) Incidence of bacteriocins produced by food-related lactic acid bacteria active towards oral pathogens. Int J Mol Sci 14:4640–4654.  https://doi.org/10.3390/ijms14034640 CrossRefGoogle Scholar
  70. Zoumpopoulou G, Tzouvanou A, Mavrogonatou E, Alexandraki V, Georgalaki M, Anastasiou R, Papadelli M, Manolopoulou E, Kazou M, Kletsas D, Papadimitriou K, Tsakalidou E (2017) Probiotic features of lactic acid bacteria isolated from a diverse pool of traditional Greek dairy products regarding specific strain-host interactions. Probiotics Antimicrob Proteins 10:313–322.  https://doi.org/10.1007/s12602-017-9311-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Alimentation, Nutrition et Santé (ALNUTS), Institut de la Nutrition, de l’Alimentation et des Technologies Agro Alimentaires (INATAA)Université Frères Mentouri Constantine 1 (UFMC1)ConstantineAlgeria
  2. 2.INRA, URAFPAUniversité de LorraineNancyFrance
  3. 3.Laboratoire Biotechnologie et Qualité des Aliments (BIOQUAL), Equipe Métabolites des Extrêmophiles METEX, Institut de la Nutrition, de l’Alimentation et des Technologies Agro Alimentaires (INATAA)Université Frères Mentouri Constantine 1 (UFMC1)ConstantineAlgeria
  4. 4.CALBINOTOXUniversité de LorraineNancyFrance

Personalised recommendations