Advertisement

Insights into the anti-infective properties of prodiginines

  • Zhongyu YouEmail author
  • Suping Zhang
  • Xiaoxia Liu
  • Jin Zhang
  • Yujie Wang
  • Yongjia Peng
  • Wenjing Wu
Mini-Review

Abstract

Prodiginines are a large family of tripyrrole alkaloids that contain natural members produced by various bacteria and non-natural members obtained from chemical synthesis, enzymatic synthesis, and mutasynthesis. These compounds have attracted a great deal of attention due to their wide range of fascinating properties including anti-infective, anticancer, and immunosuppressive activities. In consideration of the great need for novel and effective anti-infective agents, this review is mainly focused on the current status of research on the anti-infective properties of prodiginines, highlighting their antibacterial, antifungal, antiprotozoal, anti-larval, and antiviral activities. Additionally, the multiple mechanisms by which prodiginines exert their anti-infective effects will also be discussed.

Keywords

Prodiginines Antibacterial Antifungal Antiprotozoal Anti-larval Antiviral 

Notes

Funding

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14C050002), Project of Jiaxing Science and Technology (2017AY33087).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abraham P, Florey HW (1949) Antibiotics from chromogenic bacteria. In: H. W. Florey, E. Chain, N. G. Heatley, M. A. Jennings, A. G. Sanders, E. P. Abraham, Florey ME (eds) Antibiotics. vol 1. Oxford University Press, London, pp 537–565Google Scholar
  2. Alihosseini F, Ju KS, Lango J, Hammock BD, Sun G (2008) Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol Prog 24(3):742–747.  https://doi.org/10.1021/bp070481r Google Scholar
  3. Arivizhivendhan KV, Mahesh M, Boopathy R, Swarnalatha S, Mary RR, Sekaran G (2018) Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol 55(7):2661–2670.  https://doi.org/10.1007/s13197-018-3188-9 Google Scholar
  4. Ashley EA, Pyae Phyo A, Woodrow CJ (2018) Malaria. Lancet 391(10130):1608–1621.  https://doi.org/10.1016/s0140-6736(18)30324-6 Google Scholar
  5. Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107(1–2):89–96.  https://doi.org/10.1016/j.exppara.2004.04.007 Google Scholar
  6. Baragana B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Luksch T, Martinez MS, Luksch T, Bolscher JM, Woodland A, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jimenez-Diaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH (2015) A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522(7556):315–320.  https://doi.org/10.1038/nature14451 Google Scholar
  7. Bassegoda A, Ivanova K, Ramon E, Tzanov T (2018) Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 102(5):2075–2087.  https://doi.org/10.1007/s00253-018-8776-0 Google Scholar
  8. Bennett JW, Bentley R (2000) Seeing red: the story of prodigiosin. Adv Appl Microbiol 47:1–32Google Scholar
  9. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51.  https://doi.org/10.1038/nrmicro3380 Google Scholar
  10. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343.  https://doi.org/10.1038/nature17042 Google Scholar
  11. Campo VL, Marchiori MF, Carvalho I (2018) Insights into anti-trypanosomal agents based on synthetic glycoconjugates. Curr Top Med Chem 18(5):382–396.  https://doi.org/10.2174/1568026618666180509145305 Google Scholar
  12. Castro A, Gale G, Means G, Tertzakian G (1967) Antimicrobial properties of pyrrole derivatives. J Med Chem 10(1):29–32Google Scholar
  13. Castro AJ (1967) Antimalarial activity of prodigiosin. Nature 213(5079):903–904Google Scholar
  14. Chawrai SR, Williamson NR, Salmond GP, Leeper FJ (2008) Chemoenzymatic synthesis of prodigiosin analogues—exploring the substrate specificity of PigC. Chem Commun (16):1862–1864.  https://doi.org/10.1039/b719353j
  15. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z (2014) Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217.  https://doi.org/10.3389/fmicb.2014.00217 Google Scholar
  16. Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38(2):99–107.  https://doi.org/10.1016/j.ijantimicag.2011.02.014 Google Scholar
  17. Danevčič T, Borić Vezjak M, Tabor M, Zorec M, Stopar D (2016a) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol 7:27.  https://doi.org/10.3389/fmicb.2016.00027 Google Scholar
  18. Danevčič T, Borić Vezjak M, Zorec M, Stopar D (2016b) Prodigiosin—a multifaceted Escherichia coli antimicrobial agent. PLoS One 11(9):e0162412.  https://doi.org/10.1371/journal.pone.0162412 Google Scholar
  19. Darshan N, Manonmani HK (2015) Prodigiosin and its potential applications. J Food Sci Technol 52(9):5393–5407.  https://doi.org/10.1007/s13197-015-1740-4 Google Scholar
  20. Darshan N, Manonmani HK (2016) Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express 6(1):50.  https://doi.org/10.1186/s13568-016-0222-z Google Scholar
  21. de Campos LJ, de Melo EB (2014) Modeling structure-activity relationships of prodiginines with antimalarial activity using GA/MLR and OPS/PLS. J Mol Graph 54:19–31.  https://doi.org/10.1016/j.jmgm.2014.08.004 Google Scholar
  22. Duzhak AB, Panfilova ZI, Duzhak TG, Vasyunina EA, Shternshis MV (2012) Role of prodigiosin and chitinases in antagonistic activity of the bacterium Serratia marcescens against the fungus Didymella applanata. Biochemistry (Mosc) 77(8):910–916.  https://doi.org/10.1134/s0006297912080123 Google Scholar
  23. El-Bondkly AM, El-Gendy MM, Bassyouni RH (2012) Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species. Antonie Van Leeuwenhoek 102(4):719–734.  https://doi.org/10.1007/s10482-012-9772-5 Google Scholar
  24. Eckelmann D, Spiteller M, Kusari S (2018) Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep 8:5283.  https://doi.org/10.1038/S41598-018-23538-5 Google Scholar
  25. Feng M, Zhang J, Xu W, Wang H, Kong X, Wu X (2018) Bombyx mori nucleopolyhedrovirus utilizes a clathrin and dynamin dependent endocytosis entry pathway into BmN cells. Virus Res 253:12–19.  https://doi.org/10.1016/j.virusres.2018.05.020 Google Scholar
  26. Fones HN, Fisher MC, Gurr SJ (2017) Emerging fungal threats to plants and animals challenge agriculture and ecosystem resilience. Microbiol Spectr 5(2):FUNK-0027-2016.  https://doi.org/10.1128/microbiolspec.FUNK-0027-2016
  27. Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed Eng 42(31):3582–3603.  https://doi.org/10.1002/anie.200300582 Google Scholar
  28. Genes C, Baquero E, Echeverri F, Maya JD, Triana O (2011) Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasit Vectors 4:66.  https://doi.org/10.1186/1756-3305-4-66 Google Scholar
  29. Gerber NN (1971) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri. J Antibiot 24(9):636–640Google Scholar
  30. Gerber NN (1975a) A new prodiginne (prodigiosin-like) pigment from Streptomyces. Antimalarial activity of several prodiginnes. J Antibiot 28(3):194–199Google Scholar
  31. Gerber NN (1975b) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3(4):469–485Google Scholar
  32. Gondil VS, Asif M, Bhalla TC (2017) Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech 7(5):338Google Scholar
  33. Gupta AK, Foley KA, Versteeg SG (2017) New antifungal agents and new formulations against dermatophytes. Mycopathologia 182(1–2):127–141.  https://doi.org/10.1007/s11046-016-0045-0 Google Scholar
  34. Gutierrez-Roman MI, Holguin-Melendez F, Dunn MF, Guillen-Navarro K, Huerta-Palacios G (2015) Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). Biocontrol 60(4):565–572.  https://doi.org/10.1007/s10526-015-9655-6 Google Scholar
  35. Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31(1):e00071–e00017.  https://doi.org/10.1128/cmr.00071-17 Google Scholar
  36. Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A (2018) Natural biocide cocktails: combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 13(7):e0200940.  https://doi.org/10.1371/journal.pone.0200940 Google Scholar
  37. Holbein J, Grundler FM, Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67(7):2049–2061.  https://doi.org/10.1093/jxb/erw005 Google Scholar
  38. Hu DX, Withall DM, Challis GL, Thomson RJ (2016) Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem Rev 116(14):7818–7853.  https://doi.org/10.1021/acs.chemrev.6b00024 Google Scholar
  39. Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y (2002) Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother 46(4):1112–1113.  https://doi.org/10.1128/AAC.46.4.1112-1113.2002 Google Scholar
  40. Ji K, Jeong TH, Kim TY (2015) Anti-MRSA properties of prodigiosin from Serratia sp. PDGS 120915. J Life Sci 25(1):29–36.  https://doi.org/10.5352/JLS.2015.25.1.29 Google Scholar
  41. Kancharla P, Kelly JX, Reynolds KA (2015) Synthesis and structure-activity relationships of tambjamines and B-Ring functionalized prodiginines as potent antimalarials. J Med Chem 58(18):7286–7309.  https://doi.org/10.1021/acs.jmedchem.5b00560 Google Scholar
  42. Kancharla P, Lu W, Salem SM, Kelly JX, Reynolds KA (2014) Stereospecific synthesis of 23-hydroxyundecylprodiginines and analogues and conversion to antimalarial premarineosins via a Rieske oxygenase catalyzed bicyclization. J Organomet Chem 79(23):11674–11689.  https://doi.org/10.1021/jo5023553 Google Scholar
  43. Kancharla P, Smilkstein M, Kelly JX, Shweta SSM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem 54(15):5296–5306.  https://doi.org/10.1021/jm200543y Google Scholar
  44. Kashem SW, Kaplan DH (2016) Skin immunity to Candida albicans. Trends Immunol 37(7):440–450.  https://doi.org/10.1016/j.it.2016.04.007 Google Scholar
  45. Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43(2–3):155–176.  https://doi.org/10.1007/s10295-015-1723-5 Google Scholar
  46. Kimyon O, Das T, Ibugo AI, Kutty SK, Ho KK, Tebben J, Kumar N, Manefield M (2016) Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Front Microbiol 7:972.  https://doi.org/10.3389/fmicb.2016.00972 Google Scholar
  47. Klein AS, Brass HUC, Klebl DP, Classen T, Loeschcke A, Drepper T, Sievers S, Jaeger KE, Pietruszka J (2018) Preparation of cyclic prodiginines by mutasynthesis in Pseudomonas putida KT2440. Chembiochem 19(14):1545–1552.  https://doi.org/10.1002/cbic.201800154 Google Scholar
  48. Klein AS, Domrose A, Bongen P, Brass HUC, Classen T, Loeschcke A, Drepper T, Laraia L, Sievers S, Jaeger KE, Pietruszka J (2017) New prodigiosin derivatives obtained by mutasynthesis in Pseudomonas putida. ACS Synth Biol 6(9):1757–1765.  https://doi.org/10.1021/acssynbio.7b00099 Google Scholar
  49. Kohler JR, Hube B, Puccia R, Casadevall A, Perfect JR (2017) Fungi that infect humans. Microbiol Spectr 5(3):FUNK-0014-2016.  https://doi.org/10.1128/microbiolspec.FUNK-0014-2016
  50. Lack A (1949) Prodigiosin; antibiotic action on Coccidioides immitis in vitro. Proc Soc Exp Biol Med 72(3):656–658Google Scholar
  51. Lapenda JC, Silva PA, Vicalvi MC, Sena KX, Nascimento SC (2015) Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J Microbiol Biotechnol 31(2):399–406.  https://doi.org/10.1007/s11274-014-1793-y Google Scholar
  52. Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen JA, Klugman K, Davies S (2016) Access to effective antimicrobials: a worldwide challenge. Lancet 387(10014):168–175.  https://doi.org/10.1016/s0140-6736(15)00474-2 Google Scholar
  53. Lazaro JE, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins 11(4):367–377Google Scholar
  54. Lee JS, Kim YS, Park S, Kim J, Kang SJ, Lee MH, Ryu S, Choi JM, Oh TK, Yoon JH (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77(14):4967–4973.  https://doi.org/10.1128/aem.01986-10 Google Scholar
  55. Liang TW, Chen SY, Chen YC, Chen CH, Yen YH, Wang SL (2013) Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. J Food Sci 78(11):M1743–M1751.  https://doi.org/10.1111/1750-3841.12272 Google Scholar
  56. Liu P, Wang YY, Qi X, Gu Q, Geng M, Li J (2013) Undecylprodigiosin induced apoptosis in P388 cancer cells is associated with its binding to ribosome. PLoS One 8(6):e65381.  https://doi.org/10.1371/journal.pone.0065381 Google Scholar
  57. Mahajan DT, Masand VH, Patil KN, Ben Hadda T, Jawarkar RD, Thakur SD, Rastija V (2012) CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorg Med Chem Lett 22(14):4827–4835.  https://doi.org/10.1016/j.bmcl.2012.05.115 Google Scholar
  58. Marchal E, Smithen DA, Uddin MI, Robertson AW, Jakeman DL, Mollard V, Goodman CD, MacDougall KS, McFarland SA, McFadden GI, Thompson A (2014) Synthesis and antimalarial activity of prodigiosenes. Org Biomol Chem 12(24):4132–4142.  https://doi.org/10.1039/c3ob42548g Google Scholar
  59. Marchal E, Uddin MI, Smithen DA, Hawco CLA, Lanteigne M, Overy DP, Kerr RG, Thompson A (2013) Antimicrobial activity of non-natural prodigiosenes. RSC Adv 3(45):22967–22971.  https://doi.org/10.1039/c3ra45479g Google Scholar
  60. Masand VH, Mahajan DT, Patil KN, Hadda TB, Youssoufi MH, Jawarkar RD, Shibi IG (2013) Optimization of antimalarial activity of synthetic prodiginines: QSAR, GUSAR, and CoMFA analyses. Chem Biol Drug Des 81(4):527–536.  https://doi.org/10.1111/cbdd.12099 Google Scholar
  61. McRary WL, Beaver EL, Noble ER (1953) In vitro effects of prodigiosin and other antibiotics on Trypanosoma cruzi. Exp Parasitol 2:125–128Google Scholar
  62. Meschke H, Walter S, Schrempf H (2012) Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol 14(4):940–952.  https://doi.org/10.1111/j.1462-2920.2011.02665.x Google Scholar
  63. Montaner B, Perez-Tomas R (2003) The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 3(1):57–65.  https://doi.org/10.2174/1568009033333772 Google Scholar
  64. Nakashima T, Kato Y, Yamaguchi K, Oda T (2005) Evaluation of the anti-Trichophyton activity of a prodigiosin analogue produced by γ-proteobacterium, using stratum corneum epidermis of the Yucatan micropig. J Infect Chemother 11(3):123–128.  https://doi.org/10.1007/s10156-005-0376-0 Google Scholar
  65. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, Goulet D, Viallet J, Belec L, Billot X, Acoca S, Purisima E, Wiegmans A, Cluse L, Johnstone RW, Beauparlant P, Shore GC (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A 104(49):19512–19517.  https://doi.org/10.1073/pnas.0709443104 Google Scholar
  66. Nisha N, Kumar K, Kumar V (2015) Prodigiosin alkaloids: recent advancements in total synthesis and their biological potential. RSC Adv 5(15):10899–10920.  https://doi.org/10.1039/c4ra10296g Google Scholar
  67. Noble SM, Gianetti BA, Witchley JN (2017) Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 15(2):96–108.  https://doi.org/10.1038/nrmicro.2016.157 Google Scholar
  68. Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, James L, Ginsberg MS, Juergens R, Markus S, Tyson L, Subzwari S, Kris MG, Krug LM (2010) A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol 66(6):1079–1085.  https://doi.org/10.1007/s00280-010-1265-5 Google Scholar
  69. Pandey R, Chander R, Sainis KB (2009) Prodigiosins as anti cancer agents: living upto their name. Curr Pharm Des 15(7):732–741.  https://doi.org/10.2174/138161209787582192 Google Scholar
  70. Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109(4):1179–1187.  https://doi.org/10.1007/s00436-011-2365-9 Google Scholar
  71. Perez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94.  https://doi.org/10.1016/s0140-6736(17)31612-4 Google Scholar
  72. Perez-Tomas R, Montaner B, Llagostera E, Soto-Cerrato V (2003) The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol 66(8):1447–1452.  https://doi.org/10.1016/S0006-2952(03)00496-9 Google Scholar
  73. Perez-Tomas R, Vinas M (2010) New insights on the antitumoral properties of prodiginines. Curr Med Chem 17(21):2222–2231.  https://doi.org/10.2174/092986710791331103 Google Scholar
  74. Prabhu VV, Hong B, Allen JE, Zhang S, Lulla AR, Dicker DT, El-Deiry WS (2016) Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-jun-mediated deltaNp73 inhibition and p73 activation. Cancer Res 76(7):1989–1999.  https://doi.org/10.1158/0008-5472.can-14-2430 Google Scholar
  75. Priya K, Satheesh S, Ashokkumar B, Varalakshmi P, Selvakumar G, Sivakumar N (2013) Antifouling activity of prodigiosin from estuarine isolate of Serratia marcescens CMST 07. In: Velu R (ed) Microbiological research in agroecosystem management, vol XVI. Springer, New Delhi, pp 11–21Google Scholar
  76. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7(4):493–512.  https://doi.org/10.4155/fmc.15.6 Google Scholar
  77. Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, Satish P (2015) In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int 64(5):353–356.  https://doi.org/10.1016/j.parint.2015.05.004 Google Scholar
  78. Rahul S, Chandrashekhar P, Hemant B, Chandrakant N, Laxmikant S, Satish P (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 28(17):1399–1404.  https://doi.org/10.1080/14786419.2014.904310 Google Scholar
  79. Singh B, Vishwakarma RA, Bharate SB (2013) QSAR and pharmacophore modeling of natural and synthetic antimalarial prodiginines. Curr Comput-Aided Drug Des 9(3):350–359Google Scholar
  80. Singh SB, Young K, Silver LL (2017) What is an "ideal" antibiotic? Discovery challenges and path forward. Biochem Pharmacol 133:63–73.  https://doi.org/10.1016/j.bcp.2017.01.003 Google Scholar
  81. Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid-based Complement Altern Med:17. doi: https://doi.org/10.1155/2011/670349
  82. Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96(5):1217–1231.  https://doi.org/10.1007/s00253-012-4237-3 Google Scholar
  83. Stankovic N, Senerovic L, Ilic-Tomic T, Vasiljevic B, Nikodinovic-Runic J (2014) Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 98(9):3841–3858.  https://doi.org/10.1007/s00253-014-5590-1 Google Scholar
  84. Sumathi C, MohanaPriya D, Swarnalatha S, Dinesh MG, Sekaran G (2014) Production of prodigiosin using tannery fleshing and evaluating its pharmacological effects. Sci World J 2014:290327.  https://doi.org/10.1155/2014/290327 Google Scholar
  85. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Salunke BK, Patil SV (2015a) Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic Biochem Physiol 123:49–55.  https://doi.org/10.1016/j.pestbp.2015.01.018 Google Scholar
  86. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, Patil SV (2015b) Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci 37(1):98–107.  https://doi.org/10.1111/ics.12175 Google Scholar
  87. Suryawanshi RK, Patil CD, Borase HP, Salunke BK, Patil SV (2014) Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl Biochem Biotechnol 173(5):1209–1221.  https://doi.org/10.1007/s12010-014-0921-3 Google Scholar
  88. Suryawanshi RK, Patil CD, Koli SH, Hallsworth JE, Patil SV (2017) Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res 31(5):572–577.  https://doi.org/10.1080/14786419.2016.1195380 Google Scholar
  89. Suzuki N, Ohtaguro N, Yoshida Y, Hirai M, Matsuo H, Yamada Y, Imamura N, Tsuchiya T (2015) A compound inhibits biofilm formation of Staphylococcus aureus from Streptomyces. Biol Pharm Bull 38(6):889–892.  https://doi.org/10.1248/bpb.b15-00053 Google Scholar
  90. Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, Sun Q, Sha O, Wang X, Jiang W, Willert K, Wei L, Carson DA, Lu D (2016) Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci U S A 113(46):13150–13155.  https://doi.org/10.1073/pnas.1616336113 Google Scholar
  91. Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342.  https://doi.org/10.1186/s13071-015-0959-2 Google Scholar
  92. Williamson NR, Fineran PC, Leeper FJ, Salmond GP (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4(12):887–899.  https://doi.org/10.1038/nrmicro1531 Google Scholar
  93. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2018) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 75(4):1049–1062.  https://doi.org/10.1007/s00248-017-1095-7 Google Scholar
  94. You ZY, Liu XX, Zhang SP, Wang YJ (2018) Characterization of a prodigiosin synthetase PigC from Serratia marcescens jx-1 and its application in prodigiosin analogue synthesis. Biochem Eng J 134:1–11.  https://doi.org/10.1016/j.bej.2018.01.034 Google Scholar
  95. Zhou W, Zeng C, Liu R, Chen J, Li R, Wang X, Bai W, Liu X, Xiang T, Zhang L, Wan Y (2016) Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro. Appl Microbiol Biotechnol 100(9):3979–3988.  https://doi.org/10.1007/s00253-015-7242-5 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhongyu You
    • 1
    Email author
  • Suping Zhang
    • 2
  • Xiaoxia Liu
    • 1
  • Jin Zhang
    • 1
  • Yujie Wang
    • 1
  • Yongjia Peng
    • 1
  • Wenjing Wu
    • 1
  1. 1.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingPeople’s Republic of China
  2. 2.Nanhu CollegeJiaxing UniversityJiaxingPeople’s Republic of China

Personalised recommendations