Advertisement

Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120

  • Akiyoshi Higo
  • Shigeki EhiraEmail author
Bioenergy and biofuels
  • 122 Downloads

Abstract

Cyanobacteria are oxygen-evolving photosynthetic bacteria. Established genetic manipulation methods and recently developed gene-regulation tools have enabled the photosynthetic conversion of carbon dioxide to biofuels and valuable chemicals in cyanobacteria, especially in unicellular cyanobacteria. However, the oxygen sensitivity of enzyme(s) introduced into cyanobacteria hampers productivity in some cases. Anabaena sp. PCC 7120 is a filamentous cyanobacterium consisting of a few hundred of vegetative cells, which perform oxygenic photosynthesis. Upon nitrogen deprivation, heterocysts, which are specialized cells for nitrogen fixation, are differentiated from vegetative cells at semiregular intervals. The micro-oxic environment within heterocysts protects oxygen-labile nitrogenase from oxygen. This study aimed to repurpose the heterocyst as a host for the production of chemicals with oxygen-sensitive enzymes under photosynthetic conditions. Herein, Anabaena strains expressing enzymes of 1-butanol synthetic pathway from the anaerobe Clostridium acetobutylicum within heterocysts were created. A strain that expressed a highly oxygen-sensitive Bcd/EtfAB complex produced 1-butanol even under photosynthetic conditions. Furthermore, the 1-butanol production per heterocyst cell of a butanol-producing Anabaena strain was fivefold higher than that per cell of unicellular cyanobacterium with the same set of 1-butanol synthetic pathway genes. Thus, our study showed the usefulness of Anabaena heterocysts as a chassis for anaerobic production driven by oxygen-evolving photosynthesis.

Keywords

Anaerobic fermentation Butanol production Cyanobacteria Heterocyst Metabolic engineering Oxygen-sensitive enzymes 

Notes

Acknowledgments

This work was supported in part by the Institute for Fermentation, Osaka, Japan, and by a Grant-In-Aid for Scientific Research (C) 18K05395 from the Japan Society for the Promotion of Science. We thank NITE Biological Resource Center (NITE, Kisarazu, Japan) and Dr. Tomohisa Kuzuyama (The University of Tokyo, Japan) for kindly providing Clostridium acetobutylicum NBRC 13948 (ATCC 824) genomic DNA and an nphT7 vector, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9635_MOESM1_ESM.pdf (124 kb)
ESM 1 (PDF 123 kb)

References

  1. Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, Uhlén M, Hudson EP (2015) Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb Cell Factories 14:167.  https://doi.org/10.1186/s12934-015-0355-9 CrossRefGoogle Scholar
  2. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311CrossRefGoogle Scholar
  3. Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A (2018) Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 102:5775–5783CrossRefGoogle Scholar
  4. Cai Y, Wolk CP (1990) Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172:3138–3145CrossRefGoogle Scholar
  5. Carroll AL, Case AE, Zhang A, Atsumi S (2018) Metabolic engineering tools in model cyanobacteria. Metab Eng 50:47–56CrossRefGoogle Scholar
  6. Chen CT, Liao JC (2016) Frontiers in microbial 1-butanol and isobutanol production. FEMS 363:fnw020CrossRefGoogle Scholar
  7. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668CrossRefGoogle Scholar
  8. Ehira S, Takeuchi T, Higo A (2018) Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria. Appl Microbiol Biotechnol 102:1523–1531CrossRefGoogle Scholar
  9. Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754CrossRefGoogle Scholar
  10. Fan Q, Huang G, Lechno-Yossef S, Wolk CP, Kaneko T, Tabata S (2005) Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58:227–243CrossRefGoogle Scholar
  11. Fathima AM, Chuang D, Laviña WA, Liao J, Putri SP, Fukusaki E (2018) Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus. Biotechnol Biofuels 11:188.  https://doi.org/10.1186/s13068-018-1187-8 CrossRefGoogle Scholar
  12. Flores, E., Picossi, S., Valladares, A., Herrero, A. (2018) Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbagrm.2018.04.006
  13. Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830CrossRefGoogle Scholar
  14. Fu C, Donovan WP, Shikapwashya-Hasser O, Ye X, Cole RH (2014) Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9:e115318CrossRefGoogle Scholar
  15. Higo A, Isu A, Fukaya Y, Ehira S, Hisabori T (2018a) Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 59:119–127CrossRefGoogle Scholar
  16. Higo A, Isu A, Fukaya Y, Hisabori T (2018b) Spatio-temporal gene induction systems in the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol. 59:82–89CrossRefGoogle Scholar
  17. Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119:585–590CrossRefGoogle Scholar
  18. Hirokawa Y, Dempo Y, Fukusaki E, Hanai T (2017) Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongates PCC 7942, under photosynthetic conditions. J Biosci Bioeng 123:39–45CrossRefGoogle Scholar
  19. Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181CrossRefGoogle Scholar
  20. Ihara M, Kawano Y, Urano M, Okabe A (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS One 8:e71581CrossRefGoogle Scholar
  21. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316CrossRefGoogle Scholar
  22. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205-13Google Scholar
  23. Kato A, Takatani N, Ikeda K, Maeda SI, Omata T (2017) Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. Biotechnol Biofuels 10:141.  https://doi.org/10.1186/s13068-017-0831-z
  24. Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB (2018) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem 293:5044–5052CrossRefGoogle Scholar
  25. Ku JT, Lan EI (2018) A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2. Metab Eng 46:35–42CrossRefGoogle Scholar
  26. Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315CrossRefGoogle Scholar
  27. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao J, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108CrossRefGoogle Scholar
  28. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363CrossRefGoogle Scholar
  29. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023CrossRefGoogle Scholar
  30. Lan EI, Ro S, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681CrossRefGoogle Scholar
  31. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850CrossRefGoogle Scholar
  32. Luinenburg I, Coleman JR (1990) A requirement for phosphoenol-pyruvate carboxylase in the cyanobacterium Synechococcus PCC 7942. Arch Microbiol 154:471–474CrossRefGoogle Scholar
  33. Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80:6704–6713CrossRefGoogle Scholar
  34. Magnuson A, Cardona T (2016) Thylakoid membrane function in heterocysts. Biochim Biophys Acta 1857:309–319CrossRefGoogle Scholar
  35. Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol. 54:1724–1735CrossRefGoogle Scholar
  36. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273CrossRefGoogle Scholar
  37. Noguchi S, Putri SP, Lan EI, Laviña WA, Dempo Y, Bamba T, Liao JC, Fukusaki E (2016) Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics 12:26.  https://doi.org/10.1007/s11306-015-0940-2 CrossRefGoogle Scholar
  38. Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, Maldener I, Flores E, Mullineaux CW (2015) Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 6:e02109–e02114CrossRefGoogle Scholar
  39. Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 62:154–159CrossRefGoogle Scholar
  40. Okamura E, Tomita T, Sawa R, Nishiyama M, Kuzuyama T (2010) Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc Natl Acad Sci U S A 107:11265–11270CrossRefGoogle Scholar
  41. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254CrossRefGoogle Scholar
  42. Pernil R, Herrero A, Flores E (2010) Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 192:5165–5172CrossRefGoogle Scholar
  43. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  44. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915CrossRefGoogle Scholar
  45. Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177:6184–6194CrossRefGoogle Scholar
  46. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447CrossRefGoogle Scholar
  47. Wang Y, Xu X (2005) Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120. J Bacteriol 187:8489–8493CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations