Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2493–2505 | Cite as

Insertions of antihypertensive peptides and their applications in pharmacy and functional foods

  • Jocksan I. Morales-Camacho
  • Edgar Espinosa-Hernández
  • F. Fátima Rosas-Cárdenas
  • Tamara Semería-Maitret
  • Silvia Luna-SuárezEmail author


Hypertension is a worldwide health problem. It is the main cardiovascular risk factor and affects about 31% of the world’s adult population. The drugs used to control hypertension may cause side effects; for this reason, there are many investigations focused on searching for alternatives to control or prevent this disease through diet. For example, many peptides have demonstrated antihypertensive effects. The insertion of bioactive peptides is a biotechnological implement used to improve the nutraceutical properties of proteins. This work reviews the current data on the insertion of antihypertensive peptides (AHPs) into food proteins, the systems used to produce the AHPs, the advantages and disadvantages between them, the parameters to produce them at major scales, and their potential applications in pharmacy and functional foods.


Protein engineering Protein expression Antihypertensive peptides Functional foods Fusion protein Modified protein 


Funding information

This work was supported by the Consejo Nacional de Ciencia y Tecnología [grant no. 256478, 270245] as well as by the Secretaría de Investigación y Posgrado-IPN

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aguilar-Toalá JE, Santiago-López L, Peres CM, Peres C, Garcia HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A (2017) Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci 100:65–75. CrossRefPubMedGoogle Scholar
  2. Ahmed AS, El-Bassiony T, Elmalt LM, Ibrahim HR (2015) Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res Int 74:80–88. CrossRefPubMedGoogle Scholar
  3. Alcaide-Hidalgo JM, Pueyo E, Polo MC, Martiánez Rodríguez AJ (2007) Bioactive peptides released from Saccharomyces cerevisiae under accelerated autolysis in a wine model system. J Food Sci 72:M276–M279. CrossRefPubMedGoogle Scholar
  4. Ben Henda Y, Labidi A, Arnaudin I, Bridiau N, Delatouche R, Maugard T, Piot JM, Sannier F, Thiéry V, Bordenave-Juchereau S (2013) Measuring angiotensin-I converting enzyme inhibitory activity by micro plate assays: comparison using marine cryptides and tentative threshold determinations with captopril and losartan. J Agric Food Chem 61:10685–10690. CrossRefPubMedGoogle Scholar
  5. Carrizalez-López C, González-Ortega O, Ochoa-Méndez CE, Galván-Moreno FU, Rosales-Mendoza S, Monreal-Escalante E, Bañuelos-Hernández B, Paz-Maldonado LMT, Castro-Moreno P, Ibarra-Barajas M, Soria-Guerra RE (2018) Expression of multiple antihypertensive peptides as a fusion protein in the chloroplast of Chlamydomonas reinhardtii. J Appl Phycol 30:1701–1709. CrossRefGoogle Scholar
  6. Castro-Martínez C, Luna-Suárez S, Paredes-López O (2012) Overexpression of a modified protein from amaranth seed in Escherichia coli and effect of environmental conditions on the protein expression. J Biotechnol 158:59–67. CrossRefPubMedGoogle Scholar
  7. Chirinos R, Ochoa K, Aguilar-Galvez A, Carpentier S, Pedreschi R, Campos D (2018) Obtaining of peptides with in vitro antioxidant and angiotensin I converting enzyme inhibitory activities from cañihua protein (Chenopodium pallidicaule Aellen). J Cereal Sci 83:139–146. CrossRefGoogle Scholar
  8. Cicero AFG, Rosticci M, Gerocarni B, Bacchelli S, Veronesi M, Strocchi E, Borghi C (2011) Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial. Hypertens Res 34:1035–1040. CrossRefPubMedGoogle Scholar
  9. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648. CrossRefPubMedGoogle Scholar
  10. Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B (2017) Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 9:1–19. CrossRefGoogle Scholar
  11. Espinosa-Hernández E, Morales-Camacho JI, Fernández-Velasco DA, Benítez-Cardoza CG, Rosas-Cárdenas FF, Luna-Suárez S (2018) The insertion of bioactive peptides at the C-terminal end of an 11S globulin changes the structural stability and improves the antihypertensive activity. Electron J Biotechnol 37:18–24. CrossRefGoogle Scholar
  12. Fida H, Kumada Y, Terashima M, Katsudo T, Katoh S (2009) Tandem multimer expression of angiotensin I-converting enzyme inhibitory peptide in Escherichia coli. Biotechol J 4:1345–1356. CrossRefGoogle Scholar
  13. Foltz M, Meynen EE, Bianco V, van Platerink C, Koning TMM, Kloek J (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J Nutr 137:953–958. CrossRefPubMedGoogle Scholar
  14. Galli V, Mazzoli L, Luti S, Venturi M, Guerrini S, Paoli P, Vincenzini M, Granchi L, Pazzagli L (2018) Effect of selected strains of lactobacilli on the antioxidant and anti-inflammatory properties of sourdough. Int J Food Microbiol 286:55–65. CrossRefPubMedGoogle Scholar
  15. Germán-Báez LJ, Cruz-Mendívil A, Medina-Godoy S, Milán-Carrillo J, Reyes-Moreno C, Valdez-Ortiz A (2014) Expression of an engineered acidic-subunit 11S globulin of amaranth carrying the antihypertensive peptides VY, in transgenic tomato fruits. Plant Cell Tissue Organ Cult 118:305–312. CrossRefGoogle Scholar
  16. Holmquist B, Bunning P, Riordan JF (1979) Spectrophotometric assay for angiotensin converting enzyme. Anal Biochem 95:540–548CrossRefPubMedGoogle Scholar
  17. Huang L, Ma H, Li Y, Li S (2012) Antihypertensive activity of recombinant peptide IYPR expressed in Escherichia coli as inclusion bodies. Protein Expr Purif 83:15–20. CrossRefPubMedGoogle Scholar
  18. Iwaniak A, Minkiewicz P, Darewicz M (2014) Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr Rev Food Sci Food Saf 13:114–134. CrossRefGoogle Scholar
  19. Jeong D-W, Shin DS, Ahn CW, Song IS, Lee HJ (2007) Expression of antihypertensive peptide, His-His-Leu, as tandem repeats in Escherichia coli. J Microbiol Biotechnol 17:952–959PubMedGoogle Scholar
  20. Khueychai S, Jangpromma N, Choowongkomon K, Joompang A, Daduang S, Vesaratchavest M, Payoungkiattikun W, Tachibana S, Klaynongsruang S (2018) A novel ACE inhibitory peptide derived from alkaline hydrolysis of ostrich (Struthio camelus) egg white ovalbumin. Process Biochem 73:235–245. CrossRefGoogle Scholar
  21. Li Y, Wang B, Zhang H, Wang Z, Zhu S, Ma H (2015) High-level expression of angiotensin converting enzyme inhibitory peptide Tuna AI as tandem multimer in Escherichia coli BL21 (DE3). Process Biochem 50:545–552. CrossRefGoogle Scholar
  22. Liu D, Sun H, Zhang L, Li S, Qin Z (2007) High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity. J Agric Food Chem 55:5109–5112. CrossRefPubMedGoogle Scholar
  23. Losacco M, Gallerani R, Gobbetti M, Minervini F, De Leo F (2007) Production of active angiotensin-I converting enzyme inhibitory peptides derived from bovine β-casein by recombinant DNA technologies. Biotechnol J 2:1425–1434. CrossRefPubMedGoogle Scholar
  24. Luna-Suárez S, Medina Godoy S, Cruz Hernández A, Paredes López O (2010) Modification of the amaranth 11S globulin storage protein to produce an inhibitory peptide of the angiotensin I converting enzyme, and its expression in Escherichia coli. J Biotechnol 148:240–247. CrossRefPubMedGoogle Scholar
  25. Lv GS, Huo GC, Fu XY (2003) Expression of milk-derived antihypertensive peptide in Escherichia coli. J Dairy Sci 86:1927–1931. CrossRefPubMedGoogle Scholar
  26. Matoba N, Doyama N, Yamada Y, Maruyama N, Utsumi S, Yoshikawa M (2001) Design and production of genetically modified soybean protein with anti-hypertensive activity by incorporating potent analogue of ovokinin(2-7). FEBS Lett 497:50–54. CrossRefPubMedGoogle Scholar
  27. Matsui T, Tamaya K, Seki E, Osajima K, Matsumoto K (2002a) Absorption of Val–Tyr with in vitro Angiotensin I-Converting Enzyme. Biol Pharm Bull 25:1228–1230. CrossRefPubMedGoogle Scholar
  28. Matsui T, Tamaya K, Seki E, Osajima K, Matsumoto K, Kawasaki T (2002b) Val-Tyr as a natural antihypertensive dipeptide can be absorbed into the human circulatory blood system. Clin Exp Pharmacol Physiol 29:204–208. CrossRefPubMedGoogle Scholar
  29. Medina-Godoy S, Rodríguez Yáñez SK, Bobadilla NA, Pérez Villalva R, Valdez Ortiz R, Hong E, Luna Suárez S, Paredes López O, Valdez Ortiz A (2013) Antihypertensive activity of AMC3, an engineered 11S amaranth globulin expressed in Escherichia coli, in spontaneously hypertensive rats. J Funct Foods 5:1441–1449. CrossRefGoogle Scholar
  30. Michelke L, Deussen A, Kettner K, Dieterich P, Hagemann D, Kriegel TM, Martin M (2018) Biotechnological production of the angiotensin-converting enzyme inhibitory dipeptide isoleucine-tryptophan. Eng Life Sci 18:218–226. CrossRefGoogle Scholar
  31. Morales-Camacho JI, Domínguez J, Paredes López O (2013) Overexpression of modified Amaranth protein in Escherichia coli with minimal media and lactose as inducer. Recent Pat Biotechnol 7: 61-70. doi:
  32. Morales-Camacho JI, Espinosa Hernández E, Fernández Velasco DA, Benítez Cardoza CG, Luna Suárez S (2018) Insertion of antihypertensive peptides in acidic subunit from amaranth 11S induces contrasting effects in stability. Appl Microbiol Biotechnol 102:9595–9606. CrossRefPubMedGoogle Scholar
  33. Morales-Camacho JI, Paredes López O, Espinosa Hernández E, Fernández Velasco DA, Luna Suárez S (2016) Expression, purification and thermal stability evaluation of an engineered amaranth protein expressed in Escherichia coli. Electron J Biotechnol 22:44–51. CrossRefGoogle Scholar
  34. Nishizawa K, Kita A, Doi C, Yamada Y, Ohinata K, Yoshikawa M, Ishimoto N (2008) Accumulation of the bioactive peptides, novokinin, LPYPR and rubiscolin in seeds of genetically modified soybean. Biosci Biotechnol Biochem 72:3301–3305. CrossRefPubMedGoogle Scholar
  35. Ochoa-Méndez CE, Lara-Hernández I, González LM, Aguirre-Bañuelos P, Ibarra-Barajas M, Castro-Moreno P, González-Ortega O, Soria-Guerra RE (2016) Bioactivity of an antihypertensive peptide expressed in Chlamydomonas reinhardtii. J Biotechnol 240:76–84. CrossRefPubMedGoogle Scholar
  36. Oh A, Kwang-Seok A, Park YS, Sung HC (2002) Expression and purification of an ACE-inhibitory peptide multimer from synthetic DNA in Escherichia coli. J Microbiol Biotechnol 12:59–64. CrossRefGoogle Scholar
  37. Onishi K, Matoba N, Yamada Y, Doyama N, Maruyama N, Utsumi S, Yoshikawa M (2004) Optimal designing of β-conglycinin to genetically incorporate RPLKPW, a potent anti-hypertensive peptide. Peptides 25:37–43. CrossRefPubMedGoogle Scholar
  38. Park CJ, Lee JH, Hong SS, Lee HS, Kim SC (1998) High level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50:71–76. CrossRefPubMedGoogle Scholar
  39. Prak K, Utsumi S (2009) Production of a bioactive peptide (IIAEK) in Escherichia coli using soybean proglycinin A1aB1b as a carrier. J Agric Food Chem 57:3792–3799. CrossRefPubMedGoogle Scholar
  40. Rao S, Su Y, Li J, Xu Z, Yang Y (2009) Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21. J Microbiol Biotechnol 19:1620–1627. CrossRefPubMedGoogle Scholar
  41. Rao S, Xu Z, Su Y, Li J, Sun J, Yang Y (2011) Cloning, soluble expression and production of recombinant antihypertensive peptide multimer (AHPM-2) in Escherichia coli for bioactivity identification. Protein Pept Lett 18:699–706. CrossRefPubMedGoogle Scholar
  42. Rao S, Zang X, Yang Z, Gao L, Yin Y, Fang W (2016) Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system. Protein Expr Purif 118:113–119. CrossRefPubMedGoogle Scholar
  43. Rautureau Y, Schiffrin EL (2013) Endothelin system: roles in hypertension. Hypertension:103–115.
  44. Renye J, Somkuti G (2015) Nisin-induced expression of recombinant antihypertensive peptide in dairy lactic acid bacteria. Biotechnol Lett 37:1447–1454. CrossRefPubMedGoogle Scholar
  45. Rhaleb NE, Yang XP, Carretero OA (2011) The Kallikrein-Kinin system as a regulator of cardiovascular and renal function. Compr Physiol 1:971–993. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sabbione AC, Scilingo A, Añón MC (2015) Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT Food Sci Technol 60:171–177. CrossRefGoogle Scholar
  47. Santos-Ballardo DU, Germán-Báez LJ, Cruz-Mendívil A, Fuentes-Gutiérrez CI, Milán-Carrillo J, Reyes-Moreno C, Valdez-Ortiz A (2013) Expression of the acidic-subunit of amarantin, carrying the antihypertensive biopeptides VY, in cell suspension cultures of Nicotiana tabacum NT1. Plant Cell Tissue Organ Cult 113:315–322. CrossRefGoogle Scholar
  48. Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, Bordicchia M (2017) Cardiac natriuretic peptides, hypertension and cardiovascular risk. High Blood Press Cardiovasc Prev 24:115–126. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185. CrossRefPubMedGoogle Scholar
  50. Vilahur G, Badimon JJ, Bugiardini R, Badimon L (2014) Perspectives: the burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur Hear J Suppl 16:A7–A11. CrossRefGoogle Scholar
  51. Wakasa Y, Zhao H, Hirose S, Yamauchi D, Yamada Y, Yang L, Ohinata K, Yoshikawa M, Takaiwa F (2011) Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Plant Biotechnol J 9:729–735. CrossRefPubMedGoogle Scholar
  52. Wang XL, Ma SN, Yuan YH, Ding Y, Li DS (2015) Expression and purification recombinant antihypertensive peptide ameliorates hypertension in rats with spontaneous hypertension. Protein Expr Purif 113:30–34. CrossRefPubMedGoogle Scholar
  53. Weir MR (2007) Effects of renin-angiotensin system inhibition end-organ protection: can we do better?
  54. World Health Organization (2017) Cardiovascular diseases (CVDs). Fact sheets. Accessed 05 October 2018
  55. Yamada Y, Nishizawa K, Yokoo M, Zhao H, Onishi K, Teraishi M, Utsumi S, Ishimoto M, Yoshikawa M (2008) Anti-hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides 29:331–337. CrossRefPubMedGoogle Scholar
  56. Yang G, Jiang Y, Yang W, Du F, Yao Y, Shi C, Wang C (2015) Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Factories 14:1–9. CrossRefGoogle Scholar
  57. Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320. CrossRefPubMedGoogle Scholar
  58. Yeates K, Lohfeld L, Sleeth J, Morales F, Rajkotia Y, Ogedegbe O (2015) A global perspective on cardiovascular disease in vulnerable populations. Can J Cardiol 31:1081–1093. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Química, Alimentos y AmbientalUniversidad de las Américas PueblaPueblaMexico
  2. 2.Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPNTlaxcalaMexico

Personalised recommendations