Advertisement

Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum

  • Xiaoyuan WangEmail author
Mini-Review
  • 113 Downloads

Abstract

As one of the three branched-chain amino acids essential for human body, L-isoleucine is widely used in food, medicine, and feed industries. At present, L-isoleucine is mainly produced by microbial fermentation, and the main production strain is Corynebacterium glutamicum. The biosynthetic pathway of L-isoleucine in C. glutamicum is complex, and the activity of key enzymes and the transcription of key genes in the pathway are strictly regulated. The intracellularly synthesized L-isoleucine is secreted by transporters, and the activity of the transporters is also regulated. These intricate regulatory mechanisms increase the difficulty to engineer the L-isoleucine-producing C. glutamicum. This article focuses on the mechanism of L-isoleucine biosynthesis, secretion, and regulation in C. glutamicum and reviews the various metabolic engineering strategies for improving L-isoleucine production efficiency in C. glutamicum.

Keywords

Corynebacterium glutamicum L-Isoleucine Metabolic engineering Branched-chain amino acids Microbial fermentation L-Isoleucine biosynthesis Metabolic regulation Strain development 

Notes

Acknowledgements

This work was supported by the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-10), and the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation.

Compliance with ethical standards

This article does not contain any studies with human or animal subject.

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Abatemarco J, Hill A, Alper HS (2013) Expanding the metabolic engineering toolbox with directed evolution. Biotechnol J 8:1397–1410CrossRefGoogle Scholar
  2. Becker J, Gießelmann G, Hoffmann SL, Wittmann C (2018) Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv Biochem Eng Biotechnol 162:217–263Google Scholar
  3. Chae TU, Choi SY, Kim JW, Ko YS, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82CrossRefGoogle Scholar
  4. Chen Z, Meyer W, Rappert S, Sun J, Zeng AP (2011) Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 77:4352–4360CrossRefGoogle Scholar
  5. Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng 29:66–75CrossRefGoogle Scholar
  6. Colón GE, Jetten MS, Nguyen TT, Gubler ME, Follettie MT, Sinskey AJ, Stephanopoulos G (1995) Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl Environ Microbiol 61:74–78Google Scholar
  7. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv 29:11–23CrossRefGoogle Scholar
  8. Dong X, Quinn PJ, Wang X (2012) Microbial metabolic engineering for L-threonine production. Subcell Biochem 64:283–302CrossRefGoogle Scholar
  9. Dong X, Zhao Y, Hu J, Li Y, Wang X (2016a) Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzym Microb Technol 93-94:70–78CrossRefGoogle Scholar
  10. Dong X, Zhao Y, Zhao J, Wang X (2016b) Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis. J Ind Microbiol Biotechnol 43:873–885CrossRefGoogle Scholar
  11. Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213CrossRefGoogle Scholar
  12. Follettie MT, Shin HK, Sinskey AJ (1988) Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 2:53–62CrossRefGoogle Scholar
  13. Goldbeck O, Seibold GM (2018) Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum. Plasmid 95:11–15CrossRefGoogle Scholar
  14. Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65(7):3100–3107Google Scholar
  15. Guillouet S, Rodal AA, An GH, Gorret N, Lessard PA, Sinskey AJ (2001) Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum. Appl Microbiol Biotechnol 57(5–6):667–673CrossRefGoogle Scholar
  16. Guo Y, Han M, Xu J, Zhang W (2015a) Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 109:106–112CrossRefGoogle Scholar
  17. Guo Y, Xu J, Han M, Zhang W (2015b) Generation of mutant threonine dehydratase and its effects on isoleucine synthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol 31:1369–1377CrossRefGoogle Scholar
  18. Hashiguchi K, Kojima H, Sato K, Sano K (1997) Effects of an Escherichia coli ilvA mutant gene encoding feedback-resistant threonine deaminase on L-isoleucine production by Brevibacterium flavum. Biosci Biotechnol Biochem 61:105–108CrossRefGoogle Scholar
  19. Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210CrossRefGoogle Scholar
  20. Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X (2013) Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid 70:303–313CrossRefGoogle Scholar
  21. Hu J, Li Y, Zhang H, Tan Y, Wang X (2014) Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 75:18–26CrossRefGoogle Scholar
  22. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204CrossRefGoogle Scholar
  23. Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM (2014) Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl Microbiol Biotechnol 98:5991–6002CrossRefGoogle Scholar
  24. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603CrossRefGoogle Scholar
  25. Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C (1996) Glucose-controlled L-isoleucine fed-batch production with recombinant strains of Corynebacterium glutamicum. J Biotechnol 50:123–136Google Scholar
  26. Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH Jr, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded membe of a new translocator family. J Bacteriol 184:3947–3956CrossRefGoogle Scholar
  27. Kortmann M, Kuhl V, Klaffl S, Bott M (2015) A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 8:253–265CrossRefGoogle Scholar
  28. Krömer JO, Heinzle E, Schröder H, Wittmann C (2006) Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188(2):609–618CrossRefGoogle Scholar
  29. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol 158:231–241CrossRefGoogle Scholar
  30. Lausberg F, Chattopadhyay AR, Heyer A, Eggeling L, Freudl R (2012) A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression. Plasmid 68:142–147CrossRefGoogle Scholar
  31. Lee J (2014) Development and characterization of expression vectors for Corynebacterium glutamicum. J Microbiol Biotechnol 24:70–79CrossRefGoogle Scholar
  32. Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X (2017) Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol 245:1588–1602CrossRefGoogle Scholar
  33. Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y (2017) Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Factories 16:205CrossRefGoogle Scholar
  34. Ma W, Wang J, Li Y, Hu X, Shi F, Wang X (2016) Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnol Appl Biochem 63:877–885CrossRefGoogle Scholar
  35. Ma W, Wang J, Li Y, Yin L, Wang X (2018) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Factories 17:93CrossRefGoogle Scholar
  36. Mateos LM, Pisabarro A, Pátek M, Malumbres M, Guerrero C, Eikmanns BJ, Sahm H, Martín JF (1994) Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum. J Bacteriol 176:7362–7371CrossRefGoogle Scholar
  37. McHardy AC, Tauch A, Ruckert C, Pühler A, Kalinowski J (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240CrossRefGoogle Scholar
  38. Mei J, Xu N, Ye C, Liu L, Wu J (2016) Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene 575:615–622CrossRefGoogle Scholar
  39. Miyajima R, Shiio I (1970) Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. III Properties of homoserine dehydrogenase. J Biochem 68:311–319CrossRefGoogle Scholar
  40. Möckel B, Eggeling L, Sahm H (1994) Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis. Mol Microbiol 13:833–842Google Scholar
  41. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards L-isoleucine. Appl Environ Microbiol 61:4315–4320Google Scholar
  42. Morbach S, Kelle R, Winkels S, Sahm H, Eggeling L (1996a) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 45:612–620CrossRefGoogle Scholar
  43. Morbach S, Sahm H, Eggeling L (1996b) L-Isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62:4345–4351Google Scholar
  44. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507CrossRefGoogle Scholar
  45. Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14(4):449–457CrossRefGoogle Scholar
  46. Nešvera J, Pátek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654CrossRefGoogle Scholar
  47. Nie C, He T, Zhang W, Zhang G, Ma X (2018) Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci, 19(4): E954Google Scholar
  48. Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85:155–163CrossRefGoogle Scholar
  49. Park JH, Lee SY (2010a) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85:491–506CrossRefGoogle Scholar
  50. Park JH, Lee SY (2010b) Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J 5:560–577CrossRefGoogle Scholar
  51. Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Factories 16(1):201CrossRefGoogle Scholar
  52. Petit C, Kim Y, Lee SK, Brown J, Larsen E, Ronning DR, Suh JW, Kang CM (2018) Reduction of feedback inhibition in homoserine kinase (ThrB) of Corynebacterium glutamicum enhances l-threonine biosynthesis. ACS Omega 3:1178–1186CrossRefGoogle Scholar
  53. Pfeifer E, Gätgens C, Polen T, Frunzke J (2017) Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci Rep 7:16780CrossRefGoogle Scholar
  54. Plassmeier JK, Busche T, Molck S, Persicke M, Pühler A, Rückert C, Kalinowski J (2013) A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways. J Biotechnol 163:225–232CrossRefGoogle Scholar
  55. Reed KB, Alper HS (2017) Expanding beyond canonical metabolism: interfacing alternative elements, synthetic biology, and metabolic engineering. Synth Syst Biotechnol 3:20–33CrossRefGoogle Scholar
  56. Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230CrossRefGoogle Scholar
  57. Shen J, Chen J, Jensen PR, Solem C (2017) A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries. Appl Microbiol Biotechnol 101:4737–4746CrossRefGoogle Scholar
  58. Shi F, Huan X, Wang X, Ning J (2012) Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzym Microb Technol 51(2):73–80CrossRefGoogle Scholar
  59. Shi F, Li K, Huan X, Wang X (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl Biochem Biotechnol 171:504–521CrossRefGoogle Scholar
  60. Shi F, Li K, Li Y (2015a) Comparative proteome analysis of global effect of POS5 and zwf-ppnK overexpression in L-isoleucine producing Corynebacterium glutamicum ssp. lactofermentum. Biotechnol Lett 37:1063–1071CrossRefGoogle Scholar
  61. Shi F, Niu T, Fang H (2015b) 4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp. lactofermentum under optimal corn steep liquor limitation. Appl Microbiol Biotechnol 99:3851–3863CrossRefGoogle Scholar
  62. Shi F, Fang H, Niu T, Lu Z (2016) Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum. Enzym Microb Technol 87-88:79–85CrossRefGoogle Scholar
  63. Shi F, Zhang M, Li Y, Fang H (2018) Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum. Enzym Microb Technol 115:1–8CrossRefGoogle Scholar
  64. Stephanopoulos GN, Uallino JJ (1991) Network rigidity and metabolic engineering in metabolite production. Science 252:1675–1681CrossRefGoogle Scholar
  65. Sun JK, Wu XJ, Shi JM, Xu QY, Xie XX, Chen N (2012) Effect of pH on the process of Escherichia coli L-isoleucine fermentation. Food Ferment Ind 38:12–16Google Scholar
  66. Tan Y, Xu D, Li Y, Wang X (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52CrossRefGoogle Scholar
  67. Tauch A, Hermann T, Burkovski A, Krämer R, Pühler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169:303–312CrossRefGoogle Scholar
  68. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52CrossRefGoogle Scholar
  69. Vogt M, Krumbach K, Bang WG, van Ooyen J, Noack S, Klein B, Bott M, Eggeling L (2015) The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 99:791–800Google Scholar
  70. Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X (2013) Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol 171:20–30CrossRefGoogle Scholar
  71. Wang X, Quinn PJ, Yan A (2015a) Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 90:408–427CrossRefGoogle Scholar
  72. Wang J, Wen B, Xu Q, Xie X, Chen N (2015b) Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli. Biotechnol Biotechnol Equip 29:374–380CrossRefGoogle Scholar
  73. Wang X, Zhang H, Quinn PJ (2018) Production of L-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 102:4319–4330CrossRefGoogle Scholar
  74. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58CrossRefGoogle Scholar
  75. Woo HM, Park JB (2014) Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J Biotechnol 180:43–51CrossRefGoogle Scholar
  76. Xie X, Xu L, Shi J, Xu Q, Chen N (2012) Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW. J Ind Microbiol Biotechnol 39(10):1549–1556CrossRefGoogle Scholar
  77. Xu D, Tan Y, Huan X, Hu X, Wang X (2010a) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92CrossRefGoogle Scholar
  78. Xu D, Tan Y, Shi F, Wang X (2010b) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91CrossRefGoogle Scholar
  79. Xu D, Tan Y, Li Y, Wang X (2011) Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World J Microbiol Biotechnol 27:961–968CrossRefGoogle Scholar
  80. Yamamoto K, Tsuchisaka A, Yukawa H (2017) Branched-chain amino acids. Adv Biochem Eng Biotechnol 159:103–128Google Scholar
  81. Yang J, Yang S (2017) Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18:940CrossRefGoogle Scholar
  82. Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14(5):542–550CrossRefGoogle Scholar
  83. Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114:1369–1377CrossRefGoogle Scholar
  84. Yin L, Hu X, Wang X (2014a) Proteomic analysis of L-isoleucine production by Corynebacterium glutamicum. J Pure Appl Microbiol 8:899–908Google Scholar
  85. Yin L, Zhao J, Chen C, Hu X, Wang X (2014b) Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum. Biotechnol Bioprocess Eng 19:132–142CrossRefGoogle Scholar
  86. Yoshida A, Tomita T, Kurihara T, Fushinobu S, Kuzuyama T, Nishiyama M (2007) Structural insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum. J Mol Biol 368:521–536CrossRefGoogle Scholar
  87. Yoshida A, Tomita T, Kuzuyama T, Nishiyama M (2010) Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 285:27477–27486CrossRefGoogle Scholar
  88. Yu X, Li Y, Wang X (2013) Molecular evolution of threonine dehydratase in bacteria. PLoS One 8(12):e80750CrossRefGoogle Scholar
  89. Yu X, Li Y, Wang X (2014) The role of ACT-like subdomain in bacterial threonine dehydratases. PLoS One 9(1):e87550CrossRefGoogle Scholar
  90. Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T (2012) Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl Environ Microbiol 78:5831–5838CrossRefGoogle Scholar
  91. Zhang L, Jia H, Xu D (2015) Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum. Plasmid 82:50–55CrossRefGoogle Scholar
  92. Zhang H, Li Y, Wang C, Wang X (2018) Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 8:3632CrossRefGoogle Scholar
  93. Zhao J, Hu X, Li Y, Wang X (2015) Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:4795–4805CrossRefGoogle Scholar
  94. Zheng B, Ma X, Wang N, Ding T, Guo L, Zhang X, Yang Y, Li C, Huo YX (2018) Utilization of rare codon-rich markers for screening amino acid overproducers. Nat Commun 9:3616CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations