Advertisement

Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT

  • Chen Zhao
  • Zhiyong Cui
  • Xiangying Zhao
  • Jiaxiang Zhang
  • Lihe Zhang
  • Yanjun Tian
  • Qingsheng Qi
  • Jianjun LiuEmail author
Biotechnological products and process engineering
  • 206 Downloads

Abstract

Itaconic acid, a promising platform chemical, has been applied in many fields of industrial production. As a potential candidate for itaconic acid production, Yarrowia lipolytica possesses several innate abilities such as the tolerance of low-pH and high-shear stress, fast growth rate, cultivation flexibility, and easy for genetic manipulation. Here, Y. lipolytica Po1f which was tested to show high tolerance to itaconic acid could accumulate itaconic acid (0.363 g/L) by expressing the Aspergillus terreus cis-aconitic acid decarboxylase (CAD). Then, we tried to improve the supply and transport of the immediate precursor cis-aconitic acid by overexpressing a series of genes; these results indicate that overexpression of mitochondrial cis-aconitate transporter MTT is beneficial to the itaconic acid biosynthesis in Y. lipolytica. Further culture optimization enabled 22.03 g/L of itaconic acid to be produced in bioreactors, about 60-fold improvement over the initial titer, which is the highest itaconic acid production achieved at low pH by yeast reported worldwide, to data. This study demonstrates the great potential of Y. lipolytica as an industrial platform for itaconic acid production.

Keywords

Itaconic acid Yarrowia lipolytica Cis-aconitate decarboxylase Mitochondrial transporter 

Notes

Funding information

This study was funded by the key research and development plan of Shandong Province (2016ZDJS07A19) and the National High-tech R&D Program of China (863 Program) (2015AA021003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9627_MOESM1_ESM.pdf (173 kb)
ESM 1 (PDF 173 kb)

References

  1. Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98(19):8155–8164.  https://doi.org/10.1007/s00253-014-5895-0 Google Scholar
  2. Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73.  https://doi.org/10.1016/j.ymben.2015.09.005 Google Scholar
  3. Chang P, Chen GS, Chu HY, Lu KW, Shen CR (2017) Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 249:73–81.  https://doi.org/10.1016/j.jbiotec.2017.03.026 Google Scholar
  4. Chen DC, Beckerich JM, Gaillardin C (1997) One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 48(2):232–235.  https://doi.org/10.1007/s002530051043 Google Scholar
  5. Chin T, Sano M, Takahashi T, Ohara H, Aso Y (2015) Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J Biotechnol 195:43–45.  https://doi.org/10.1016/j.jbiotec.2014.12.016 Google Scholar
  6. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239.  https://doi.org/10.1016/j.ymben.2014.12.007 Google Scholar
  7. Cui Z, Gao C, Li J, Hou J, Lin CSK, Qi Q (2017) Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng 42:126–133.  https://doi.org/10.1016/j.ymben.2017.06.007 Google Scholar
  8. Cunha da Cruz J, Machado de Castro A, Camporese Servulo EF (2018) World market and biotechnological production of itaconic acid. 3 Biotech 8(3):138.  https://doi.org/10.1007/s13205-018-1151-0 Google Scholar
  9. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosic Bioeng 94(1):29–33.  https://doi.org/10.1016/S1389-1723(02)80112-8 Google Scholar
  10. Gao C, Yang X, Wang H, Rivero CP, Li C, Cui Z, Qi Q, Lin CSK (2016a) Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels 9(1):179.  https://doi.org/10.1186/s13068-016-0597-8 Google Scholar
  11. Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, Jiang Y, Yang S (2016b) Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43(8):1085–1093.  https://doi.org/10.1007/s10295-016-1789-8 Google Scholar
  12. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345.  https://doi.org/10.1038/nmeth.1318 Google Scholar
  13. Goncalves FA, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:476207.  https://doi.org/10.1155/2014/476207 Google Scholar
  14. Harder BJ, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37.  https://doi.org/10.1016/j.ymben.2016.05.008 Google Scholar
  15. Hevekerl A, Kuenz A, Vorlop K-D (2014) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98(24):10005–10012.  https://doi.org/10.1007/s00253-014-6047-2 Google Scholar
  16. Holz M, Forster A, Mauersberger S, Barth G (2009) Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 81(6):1087–1096.  https://doi.org/10.1007/s00253-008-1725-6 Google Scholar
  17. Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2011) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89(5):1519–1526.  https://doi.org/10.1007/s00253-010-2957-9 Google Scholar
  18. Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Factories 15(1):130.  https://doi.org/10.1186/s12934-016-0527-2 Google Scholar
  19. Huang X, Chen M, Lu X, Li Y, Li X, Li JJ (2014) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Factories 13(1):108.  https://doi.org/10.1186/s12934-014-0108-1 Google Scholar
  20. Kamzolova SV, Dedyukhina EG, Samoilenko VA, Lunina JN, Puntus IF, Allayarov RL, Chiglintseva MN, Mironov AA, Morgunov IG (2013) Isocitric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(20):9133–9144.  https://doi.org/10.1007/s00253-013-5182-5 Google Scholar
  21. Kamzolova SV, Allayarov RK, Lunina JN, Morgunov IG (2016) The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica. Bioresour Technol 206:128–133.  https://doi.org/10.1016/j.biortech.2016.01.092 Google Scholar
  22. Kamzolova SV, Shamin RV, Stepanova NN, Morgunov GI, Lunina JN, Allayarov RK, Samoilenko VA, Morgunov IG (2018) Fermentation conditions and media optimization for isocitric acid production from ethanol by Yarrowia lipolytica. Biomed Res Int 2018:2543210.  https://doi.org/10.1155/2018/2543210 Google Scholar
  23. Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229.  https://doi.org/10.1007/s00253-008-1523-1 Google Scholar
  24. Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431.  https://doi.org/10.1016/j.biortech.2012.11.141 Google Scholar
  25. Kuenz A, Gallenmuller Y, Willke T, Vorlop KD (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216.  https://doi.org/10.1007/s00253-012-4221-y Google Scholar
  26. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 39(4):824–827.  https://doi.org/10.1016/j.enzmictec.2006.01.005 Google Scholar
  27. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611.  https://doi.org/10.1016/j.fgb.2011.01.013 Google Scholar
  28. Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12(1):1–9.  https://doi.org/10.1186/1472-6750-12-57 Google Scholar
  29. Li A, Caspers M, Punt P (2013a) A systems biology approach for the identification of target genes for the improvement of itaconic acid production in Aspergillus species. BMC Res Notes 6(1):1–5.  https://doi.org/10.1186/1756-0500-6-505 Google Scholar
  30. Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013b) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 97(9):3901–3911.  https://doi.org/10.1007/s00253-012-4684-x Google Scholar
  31. Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109(1–2):63–81.  https://doi.org/10.1016/j.jbiotec.2003.10.027 Google Scholar
  32. Magnan C, Yu J, Chang I, Jahn E, Kanomata Y, Wu J, Zeller M, Oakes M, Baldi P, Sandmeyer S (2016) Sequence assembly of Yarrowia lipolytica strain W29/CLIB89 shows transposable element diversity. PLoS One 11(9):e0162363.  https://doi.org/10.1371/journal.pone.0162363 Google Scholar
  33. Noh MH, Lim HG, Woo SH, Song J, Jung GY (2017) Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol Bioeng 115:729–738.  https://doi.org/10.1002/bit.26508 Google Scholar
  34. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606.  https://doi.org/10.1007/s00253-009-2132-3 Google Scholar
  35. Okamoto S, Chin T, Hiratsuka K, Aso Y, Tanaka Y, Takahashi T, Ohara H (2014) Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol 60(5):191–197.  https://doi.org/10.2323/jgam.60.191 Google Scholar
  36. Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y (2015) Production of itaconic acid in Escherichia coli expressing recombinant alpha-amylase using starch as substrate. J Biosci Bioeng 119(5):548–553.  https://doi.org/10.1016/j.jbiosc.2014.10.021 Google Scholar
  37. Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165.  https://doi.org/10.1016/j.ymben.2015.06.003 Google Scholar
  38. Ovesen L, Hansen EW, Allingstrup L, Adsersen M, Langballe K, Frøkjær S (1991) Bacterial contamination and growth in two defined formula diets of different pH. Clin Nutr 10(2):114–119.  https://doi.org/10.1016/0261-5614(91)90097-V Google Scholar
  39. Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O (2005) Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 16(9):4163–4171.  https://doi.org/10.1091/mbc.E04-11-1028 Google Scholar
  40. Robert T, Friebel S (2016) Itaconic acid—a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18(10):2922–2934.  https://doi.org/10.1039/c6gc00605a Google Scholar
  41. Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2016a) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6:402–409.  https://doi.org/10.1021/acssynbio.6b00285 Google Scholar
  42. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016b) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359.  https://doi.org/10.1021/acssynbio.5b00162 Google Scholar
  43. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4:23.  https://doi.org/10.3389/fmicb.2013.00023 Google Scholar
  44. Steiger MG, Punt PJ, Ram AF, Mattanovich D, Sauer M (2016) Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng 35:95–104.  https://doi.org/10.1016/j.ymben.2016.02.003 Google Scholar
  45. Straat LVD, Tamayoramos JA, Schonewille T, Graaff LHD (2013) Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger. AMB Express 3(1):57.  https://doi.org/10.1186/2191-0855-3-57 Google Scholar
  46. Tevž G, Benčina M, Legiša M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87(5):1657–1664.  https://doi.org/10.1007/s00253-010-2642-z Google Scholar
  47. Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JP, Weusthuis RA (2015) Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express 5(1):61.  https://doi.org/10.1186/s13568-015-0147-y Google Scholar
  48. Wang JH, Tsai SH, Teng K (2012) Producing itaconic acid in yeast using glycerol as the substrate. US, US 8192965 B2Google Scholar
  49. Werpy TA, Holladay JE, White JF (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy. https://www.researchgate.net/publication/235062870. Accessed August 2004
  50. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3–4):289–295.  https://doi.org/10.1007/s002530100685 Google Scholar
  51. Young EM, Zhao Z, Gielesen BEM, Wu L, Benjamin Gordon D, Roubos JA, Voigt CA (2018) Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 48:33–43.  https://doi.org/10.1016/j.ymben.2018.05.002 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Zhao
    • 1
  • Zhiyong Cui
    • 2
  • Xiangying Zhao
    • 1
  • Jiaxiang Zhang
    • 1
  • Lihe Zhang
    • 1
  • Yanjun Tian
    • 1
  • Qingsheng Qi
    • 2
  • Jianjun Liu
    • 1
    Email author
  1. 1.Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design InstituteQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoPeople’s Republic of China

Personalised recommendations