Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2845–2855 | Cite as

The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345

  • Cong Du
  • Yinmin Li
  • Xiaoyang Zhao
  • Xuze Pei
  • Wenjie YuanEmail author
  • Fengwu Bai
  • Yu Jiang
Bioenergy and biofuels


Efficient bioconversion of lignocellulosic biomass is one of the key challenges for the production of bioethanol and chemicals. Therefore, the present work focuses on finding a robust microorganism able to convert all sugars in lignocellulosic hydrolysates efficiently. The fermentation performance showed that Kluyveromyces marxianus CICC 1727-5 could produce ethanol from glucose with productivity 4.2 g/L/h and higher ethanol yields (0.44 g/g) under 40 °C, outdistance the productivity 0.258 g/L/h of S. passalidarum ATCC MYA-4345. The xylose utilization of S. passalidarum ATCC MYA-4345 was faster than K. marxianus CICC 1727-5 with the ethanol yield 0.31 g/g at 30 °C. However, K. marxianus CICC 1727-5 could produce xylitol from xylose with the yield 0.58 g/g at 40 °C. Meanwhile, the two yeasts both had the ability to use arabinose naturally, but K. marxianus CICC 1727-5 could consume arabinose completely and quickly. Furthermore, the two yeasts both could ferment glucose and xylose simultaneously, but K. marxianus CICC 1727-5 showed much better performance in the cofermentation. The peak ethanol concentration of K. marxianus CICC 1727-5 and S. passalidarum ATCC MYA-4345 was 42.6 and 31.9 g/L, respectively. In the saccharification and cofermentation (SSCF) process using non-detoxificated corncob, K. marxianus CICC 1727-5 showed better performance. K. marxianus CICC 1727-5 was more tolerant in the presence of formic acid, acetic acid, and mix inhibitors and even was capable to grow in the medium with the acetic acid concentration up to 15 g/L. K. marxianus CICC 1727-5 is a promising candidate strain for further metabolic engineering to develop robust industrial strains for the lignocellulosic ethanol.


Spathaspora passalidarum Kluyveromyces marxianus Inhibitor tolerance Cofermentation Ethanol production Lignocellulosic biomass 



The study was supported by projects of International Cooperation and Exchanges NSFC (51561145014), China Postdoctoral Science Foundation (2015M571316), National Key Laboratory project of Microbial Metabolism (MMLKF16-04), and the Fundamental Research Funds for the Central Universities (DUT18ZD214).

Compliance with ethical standards

Competing interests

All authors agree to the submission, and we confirm that no competing interests, both financial and personal, exist with this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9625_MOESM1_ESM.pdf (237 kb)
ESM 1 (PDF 237 kb)


  1. Albuquerque TL, Silva IJ, Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes—a review. Process Biochem 49:1779–1789CrossRefGoogle Scholar
  2. Cadete RM, Rosa CA (2018) The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast 35:191–199CrossRefPubMedGoogle Scholar
  3. Cadete RM, Alejandro M, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund MF, Rosa CA, Fonseca C (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 96:167–180CrossRefGoogle Scholar
  4. Cheng KK, Wu J, Lin ZN, Zhang JA (2014) Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol Biofuels 7:166–174CrossRefPubMedPubMedCentralGoogle Scholar
  5. du Preez JC (1994) Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzym Microb Technol 16:944–956CrossRefGoogle Scholar
  6. Fernandes S, Murray P (2010) Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs 4:424–428CrossRefGoogle Scholar
  7. Groeneveld P, Stouthamer AH, Westerhoff HV (2009) Super life - how and why ‘cell selection’ leads to the fastest-growing eukaryote. FEBS J 276:254–270CrossRefPubMedGoogle Scholar
  8. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007a) Towards industrial pentosefermenting yeast strains. Appl Microbiol Biotechnol 74:937–953CrossRefPubMedGoogle Scholar
  9. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007b) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177PubMedGoogle Scholar
  10. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294CrossRefGoogle Scholar
  11. Hickert LR, de Souza-Cruz PB, Rosa CA, Ayub MA (2013) Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour Technol 143:112–116CrossRefPubMedGoogle Scholar
  12. Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214CrossRefPubMedGoogle Scholar
  13. Hou X, Yao S (2012) Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol 93:2591–2601CrossRefPubMedGoogle Scholar
  14. Hou J, Suo F, Wang C, Li X, Shen Y, Bao XM (2014) Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol 14:13–22CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509CrossRefPubMedGoogle Scholar
  16. Jeffries TW, Fady J, Lightfoot E (1985) Effect of glucose supplements on the fermentation of xylose by Pachysolen tannophilus. Biotechnol Bioeng 27:171–176Google Scholar
  17. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16–25CrossRefPubMedPubMedCentralGoogle Scholar
  18. Karin O, Oskar B, Marie F. GG, Mats G, Barbel H, Guido Z (2006) Simultaneous saccharificationand co-fermentation of glucose and xylose in steam-pretreatedcorn stover at high fiber content with Saccharomycescerevisiae TMB3400. J Biotechnol 126:488–498Google Scholar
  19. Kayikci Ö, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov068CrossRefPubMedPubMedCentralGoogle Scholar
  20. Khattab SM1, Saimura M, Kodaki T (2013) Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 165:153–156CrossRefPubMedGoogle Scholar
  21. Krahulec S, Kratzer R, Longus K, Nidetzky B (2012) Comparison of Schefersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. Microbiology Open 1:64–70CrossRefPubMedGoogle Scholar
  22. Kumar R, Tabatabaei M, Karimi K, Sárvári-Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol—a review. Biofuel Res J 3:347–356CrossRefGoogle Scholar
  23. Lee SH, Kodaki T, Park YC, Seo JH (2012) Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Biotechnol J 158:184–191CrossRefGoogle Scholar
  24. Lee SJ, Lee JH, Yang XG, Kim SB, Lee JH, Yoo HY, Park C, Kim SW (2015) Phenolic compounds: strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes. Biotechnol J 10:1920–1928Google Scholar
  25. Lee SM, Jellison T, Alper HS (2016) Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae. Appl Microbiol Biot 100:2487–2498CrossRefGoogle Scholar
  26. Lertwattanasakul N, Rodrussamee N, Surpraogi LS, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capacity of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in the thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042. Appl Microbiol Biotechnol 1:20–30Google Scholar
  27. Li H, Shen Y, Wu M, Hou J, Jiao CL, Liu ZL, Liu XL, Bao XM (2016) Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production. Bioresour Bioprocess 3:51–67CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu CG, Xue C, Lin YH (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31:257–265CrossRefPubMedGoogle Scholar
  29. Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500CrossRefPubMedPubMedCentralGoogle Scholar
  30. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380CrossRefPubMedGoogle Scholar
  31. Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110:1232–1241CrossRefPubMedGoogle Scholar
  32. Nitiyon S, Keo-oudone C, Murata M, Lertwattanasaku N, Limtong S, Kosaka T, Yamada M (2016) Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. SpringerPlus 5:185–196CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nogué VS, Karhumaa K (2014) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 37:761–722CrossRefGoogle Scholar
  34. Nonklang S, Abdel-Banat BMA, Cha-Aim K, Moonjai N, Hoshida H, Lim-tong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521CrossRefPubMedPubMedCentralGoogle Scholar
  35. Oehling V, Klaassen P, Frick O, Dusny C, Schmid A (2018) l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. Biotechnol Biofuels 11:231–246CrossRefPubMedPubMedCentralGoogle Scholar
  36. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  37. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31CrossRefPubMedGoogle Scholar
  38. Pereira SC, Maehara L, Machado CMM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44–59CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefPubMedGoogle Scholar
  40. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586CrossRefPubMedGoogle Scholar
  41. Schleif R (2000) Regulation of the L-arabinose operon of Escherichia coli. Trends Genet 16:559–565CrossRefPubMedGoogle Scholar
  42. Silva JPA, Carneiro LM, Roberto LC (2013) Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process. Biotechnol Biofuels 6:23–35CrossRefPubMedPubMedCentralGoogle Scholar
  43. Su YK, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112:457–469CrossRefPubMedGoogle Scholar
  44. Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474CrossRefPubMedGoogle Scholar
  45. van Zyl C, Prior BA, du Preez JC (1991) Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzym Microb Technol 13:82–86CrossRefGoogle Scholar
  46. Veras HCT, Parachin NS, Almeida JRM (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeast. Microb Cell Factories 16:153–160CrossRefGoogle Scholar
  47. Wang CQ, Shen Y, Zhang YY, Suo F, Hou J, Bao XM (2013) Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed Res Int 2013:461204–461212Google Scholar
  48. Wang CQ, Zhao JZ, Qiu CX, Wang SH, Shen Y, Du BH, Ding YQ, Bao XM (2017) Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering. Biomed Res Int 2017:5318232–5318239Google Scholar
  49. Wei N, Quarterman J, Kim SR, Cate JH, Jin YS (2013) Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 4:2580–2587CrossRefPubMedGoogle Scholar
  50. Wisselink HW, Toirkens MJ, Berriel MDF, Winkler AA, Van Dijken JP, Pronk JT, Van Maris AJA (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73:4881–4891CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. PNAS 108:13212–13217CrossRefPubMedGoogle Scholar
  52. Yu H, Guo J, Chen Y, Fu G, Li B, Guo X, Xiao D (2017) Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Bioresour Technol 232:168–175CrossRefPubMedGoogle Scholar
  53. Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316CrossRefPubMedGoogle Scholar
  54. Zhang M, Shi J, Jiang L (2015) Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae. Electron J Biotechnol 18:202–209CrossRefGoogle Scholar
  55. Zhang YP, Oates LG, Serate J, Xie D, Pohlmann E, Bukhman Y, Karlen SD, Yong MK, Higbee A, Eilert D, Sanford GR, Piotrowiki JF, Cavalier D, Ralph J, Coon JJ, Sato TK, Ong RG (2018) Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits. GCB Bioenergy 00:1–16Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cong Du
    • 1
  • Yinmin Li
    • 1
  • Xiaoyang Zhao
    • 1
  • Xuze Pei
    • 1
  • Wenjie Yuan
    • 1
    Email author
  • Fengwu Bai
    • 2
  • Yu Jiang
    • 3
  1. 1.School of Life Science and BiotechnologyDalian University of TechnologyDalianChina
  2. 2.State Key Laboratory of Microbial MetabolismShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations