Applied Microbiology and Biotechnology

, Volume 103, Issue 5, pp 2339–2352 | Cite as

Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats

  • Miriam Angulo
  • Martha Reyes-Becerril
  • Ramón Cepeda-Palacios
  • Dariel Tovar-Ramírez
  • María Ángeles Esteban
  • Carlos AnguloEmail author
Applied microbial and cell physiology


Several marine Debaryomyces hansenii strains have shown probiotic effects on aquatic animals, and D. hansenii-derived β-glucans have recently provided immunostimulant effects on goat leukocytes. This study assessed the probiotic effects of live yeast D. hansenii CBS 8339 on newborn goats administered orally, and subsequently challenged in vitro with Escherichia coli. D. hansenii CBS 8339 demonstrated the capacity to survive gastrointestinal tract conditions (bile salts and acid pH tolerance) and adhere to goat intestine. Twelve Saanen × Nubian crossbred newborn goats (2.9 ± 0.47 kg) were fed with a controlled diet or D. hansenii (0.7 g/kg body weight per day)–supplemented milk for 30 days. Blood samples of newborn goats were taken at days 15 and 30, and peripheral blood leukocytes were isolated for bacterial challenge, and immunological and antioxidant analyses. Despite cell viability was higher in leukocytes of goat kids fed with the yeast supplement, protection against E. coli challenge was not significantly affected. On the other hand, at day 15, oral administration of D. hansenii enhanced respiratory burst and catalase activity and increased superoxide dismutase activity after challenge. In contrast, at day 30, administration of the yeast supplement increased peroxidase activity and enhanced nitric oxide production and catalase activity after challenge. Finally, the yeast-supplemented diet upregulated the expression of the receptor genes TLR (2, 4, 6), modulator genes Raf.1, Syk, and Myd88, transcription factor gene AP-1, and cytokine genes IL-1β and TNF-α only at day 15 in leukocytes from unchallenged goat kids. These results demonstrated that a short time (15 days) of orally administering the probiotic D. hansenii CBS 8339 to newborn goats stimulated innate immune and antioxidant parameters and the expression of immune-related gene signaling pathways.


Newborn goats Marine yeast Probiotics Immune innate response Immune-associated pathways 



Authors are grateful to Isabel Toledo from UABCS and Perla Ginera for help provided in goat breeding during the bioassay. We also thank Juan Manuel Melero for facilitating goat blood samples, Patricia Hinojosa from CIBNOR Comparative Physiology Laboratory for technical support, Carmen Rodriguez and Eulalia Meza for technical support on histology analysis and Diana Fischer for English editorial services.


This research was financially supported by CONACYT (INFR-2014-01/225924 and PDCPN2014-01/248033).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Abd El-Tawab MM, Youssef IMI, Bakr HA, Fthenakis GC, Giadinis ND (2016) Role of probiotics in nutrition and health of small ruminants. Pol J Vet Sci 19(4):893–906CrossRefPubMedGoogle Scholar
  2. Abdel-Tawwab M, Abdel-Rahman AM, Ismael NE (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280(1–4):185–189CrossRefGoogle Scholar
  3. Abu-Elala N, Marzouk M, Moustafa M (2013) Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int J Vet Sci Med 1(1):21–29CrossRefGoogle Scholar
  4. Adjei-Fremah S, Ekwemalor K, Asiamah EK, Ismail H, Ibrahim S, Worku M (2018a) Effect of probiotic supplementation on growth and global gene expression in dairy cows. J Appl Anim Res 46(1):257–263CrossRefGoogle Scholar
  5. Adjei-Fremah S, Ekwemalor K, Worku M, Ibrahim S (2018b) Probiotics and ruminant health. In: Probiotics—current knowledge and future prospects. IntechOpen, Probiotics and Ruminant HealthGoogle Scholar
  6. Alamillo E, Reyes-Becerril M, Cuesta A, Angulo C (2017) Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. Fish Shellfish Immunol 70:48–56CrossRefPubMedGoogle Scholar
  7. Andlid T, Juárez RV, Gustafsson L (1995) Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microb Ecol 30(3):321–334CrossRefPubMedGoogle Scholar
  8. Angulo C, Maldonado M, Delgado K, Reyes-Becerril M (2017) Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection. Dev Comp Immunol 71:18–27CrossRefPubMedGoogle Scholar
  9. Angulo M, Reyes-Becerril M, Tovar-Ramírez D, Ascencio F, Angulo C (2018) Debaryomyces hansenii CBS 8339 β-glucan enhances immune responses and down-stream gene signaling pathways in goat peripheral blood leukocytes. Dev Comp Immunol 88:173–182CrossRefPubMedGoogle Scholar
  10. Bonfim CV, Mamoni RL, Lima Blotta MHS (2009) TLR-2, TLR-4 and dectin-1 expression in human monocytes and neutrophils stimulated by Paracoccidioides brasiliensis. Sabouraudia 47(7):722–733CrossRefGoogle Scholar
  11. Caruffo M, Navarrete N, Salgado O, Díaz A, López P, García K, Navarrete P (2015) Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Front Microbiol 6:1093CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145(1–4):5–26CrossRefGoogle Scholar
  13. Chen YJ, Kwon OS, Min BJ, Son KS, Cho JH, Hong JW, Kim IH (2005) The effects of dietary Biotite V supplementation as an alternative substance to antibiotics in growing pigs. Asian-Aust J Anim Sci 18:1642–1645CrossRefGoogle Scholar
  14. Chethan GE, Garkhal J, Sircar S, Malik YPS, Mukherjee R, Sahoo NR, De UK (2017) Immunomodulatory potential of β-glucan as supportive treatment in porcine rotavirus enteritis. Vet Immunol Immunopathol 191:36–43CrossRefPubMedGoogle Scholar
  15. Claiborne A (1985) Assay of catalase. In: Greenwald R (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284Google Scholar
  16. Collier CT, Carroll JA, Ballou MA, Starkey JD, Sparks JC (2011) Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J Anim Sci 89(1):52–58CrossRefPubMedGoogle Scholar
  17. Draksler D, Gonzáles S, Oliver G (2004) Preliminary assays for the development of a probiotic for goats. Reprod Nutr Dev 44(5):397–405CrossRefPubMedGoogle Scholar
  18. Ekwemalor K, Asiamah E, Osei B, Ismail H, Worku M (2017) Evaluation of the effect of probiotic administration on gene expression in goat blood. J Mol Biol Res 7(1):88CrossRefGoogle Scholar
  19. Esteban MA, Cuesta A, Ortuno J, Meseguer J (2001) Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish Shellfish Immunol 11(4):303–315CrossRefPubMedGoogle Scholar
  20. Fathi MM, Al-Mansour S, Al-Homidan A, Al-Khalaf A, Al-Damegh M (2012) Effect of yeast culture supplementation on carcass yield and humoral immune response of broiler chicks. Vet World 5(11):651CrossRefGoogle Scholar
  21. Giger-Reverdin S, Sauvant D, Morand-Fehr P, Tessier J, Bertin G (2004) Effect of live yeast culture supplementation on rumen fermentation in lactating dairy goats. S Afr J Anim Sci 34(5):59–61Google Scholar
  22. Gundogan N, Citak S, Yucel N, Devren A (2005) A note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. Meat Sci 69:807–810CrossRefPubMedGoogle Scholar
  23. Huff GR, Dutta V, Huff WE, Rath NC (2011) Effects of dietary yeast extract on Turkey stress response and heterophil oxidative burst activity. Br Poult Sci 52(4):446–455CrossRefPubMedGoogle Scholar
  24. Iwashita MKP, Nakandakare IB, Terhune JS, Wood T, Ranzani-Paiva MJT (2015) Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol 43(1):60–66CrossRefPubMedGoogle Scholar
  25. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefPubMedGoogle Scholar
  26. Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P, Lefebvre P, Akira S, Poulain D (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188(1):165–172CrossRefPubMedGoogle Scholar
  27. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650CrossRefPubMedGoogle Scholar
  28. Kemenade BMLV, Groeneveld A, Rens BTTM, Rombout JHWM (1994) Characterization of macrophages and neutrophilic granulocytes from the pronephros of carp (Cyprinus carpio). J Exp Biol 187:143–158PubMedGoogle Scholar
  29. Klaenhammer TR, Kullen MJ (1999) Selection and design of probiotics. Int J Food Microbiol 50(1–2):45–57CrossRefPubMedGoogle Scholar
  30. Liu G, Yu L, Martínez Y, Ren W, Ni H, Abdullah Al-Dhabi N, Yin Y (2017) Dietary Saccharomyces cerevisiae cell wall extract supplementation alleviates oxidative stress and modulates serum amino acids profiles in weaned piglets. Oxid Med Cell LongevGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  32. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151CrossRefPubMedGoogle Scholar
  33. Maragkoudakis PA, Mountzouris KC, Rosu C, Zoumpopoulou G, Papadimitriou K, Dalaka E, Hadjipetrou A, Theofanous G, Strozzi GP, Carlini N, Zervas G, Tsakalidou E (2010) Feed supplementation of Lactobacillus Plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats—a preliminary study. Int J Food Microbiol 141:S109–S116CrossRefPubMedGoogle Scholar
  34. Martins FS, Elian SD, Vieira AT, Tiago FC, Martins AK, Silva FC, Bonjardim CA (2011) Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol 301(4):359–364CrossRefPubMedGoogle Scholar
  35. Medina-Córdova N, Reyes-Becerril M, Ascencio F, Castellanos T, Campa-Córdova AI, Angulo C (2018) Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes. Int J Biol Macromol 116:599–606CrossRefPubMedGoogle Scholar
  36. Munir MB, Hashim R, Chai YH, Marsh TL, Nor SAM (2016) Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture 460:59–68CrossRefGoogle Scholar
  37. Musa HH, Wu SL, Zhu CH, Seri HI, Zhu GQ (2009) The potential benefits of probiotics in animal production and health. J Anim Vet Adv 8:313–321Google Scholar
  38. Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, Jacobs L (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and toll-like receptors. J Clin Invest 116(6):1642–1650CrossRefPubMedPubMedCentralGoogle Scholar
  39. Neumann NF, Fagan D, Belosevi M (1995) Macrophage activating factor (s) secreted by mitogen stimulated goldfish kidney leukocytes synergize with bacterial lipopolysaccharide to induce nitric oxide production in teleost macrophages. Dev Comp Immunol 19:473–482CrossRefPubMedGoogle Scholar
  40. Ochangco HS, Gamero A, Smith IM, Christensen JE, Jespersen L, Arneborg N (2016) In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 32(9):141CrossRefPubMedGoogle Scholar
  41. Park SC, Hwang MH, Kim YH, Kim JC, Song JC, Lee KW, Kim TW (2006) Comparison of pH and bile resistance of Lactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources. World J Microbiol Biotechnol 22(1):35–37CrossRefGoogle Scholar
  42. Piccione G, Bertolucci C, Giannetto C, Giudice E (2008) Clotting profiles in newborn Maltese kids during the first week of life. J Vet Diagn Investig 20(1):114–118CrossRefGoogle Scholar
  43. Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58(3–4):239–248CrossRefPubMedGoogle Scholar
  44. Reyes-Becerril M, Salinas I, Cuesta A, Meseguer J, Tovar-Ramirez D, Ascencio-Valle F, Esteban MÁ (2008) Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25(6):731–739CrossRefPubMedGoogle Scholar
  45. Reyes-Becerril M, Tovar-Ramírez D, Ascencio-Valle F, Civera-Cerecedo R, Gracia-López V, Barbosa-Solomieu V, Esteban MÁ (2011) Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila. Aquac Res 42(11):1676–1686CrossRefGoogle Scholar
  46. Reyes-Becerril M, Ascencio-Valle F, Meseguer J, Tapia-Paniagua ST, Moriñigo MA, Esteban MÁ (2012) Debaryomyces hansenii L2-enriched diet enhances the immunity status, gene expression and intestine functionality in gilthead seabream (Sparus aurata L.). Aquac Res 43(8):1107–1118CrossRefGoogle Scholar
  47. Reyes-Becerril M, Angulo C, Estrada N, Murillo Y, Ascencio-Valle F (2014) Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper (Lutjanus peru). Fish Shellfish Immunol 40(1):208–216CrossRefPubMedGoogle Scholar
  48. Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ (2017) Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 64:165–175CrossRefPubMedGoogle Scholar
  49. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2016) Cell Viability Assays, 2004Google Scholar
  50. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Groß O, Moita LF (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206(9):2037–2051CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shashidhara RG, Devegowda G (2003) Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult Sci 82(8):1319–1325CrossRefPubMedGoogle Scholar
  52. Singh DD, Pawaiya RVS, Gururaj K, Gangwar NK, Mishra AK, Singh R, Kumar A (2018) Detection of Clostridium perfringens toxinotypes, enteropathogenic E. coli, Rota and corona viruses in the intestine of neonatal goat kids by molecular techniques. Indian J Anim Res 88(6):655–661Google Scholar
  53. Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, Kelly CP (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343(1):69–76CrossRefPubMedGoogle Scholar
  54. Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, Savoini G (2007) Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin Res 67(1):7–13CrossRefGoogle Scholar
  55. Sukumaran V, Lowman DW, Sajeevan TP, Philip R (2010) Marine yeast glucans confer better protection than that of baker's yeast in Penaeus monodon against white spot syndrome virus infection. Aquac Res 41(12):1799–1805CrossRefGoogle Scholar
  56. Tiago FCP, Porto BAA, Ribeiro NS, Moreira LMC, Arantes RME, Vieira AT, Nicoli JR (2015) Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease. Benefic Microbes 6(6):807–815CrossRefGoogle Scholar
  57. Tourais-Esteves I, Bernardet N, Lacroix-Lamande S, Ferret-Bernard S, Laurent F (2008) Neonatal goats display a stronger TH1-type cytokine response to TLR ligands than adults. Dev Comp Immunol 32:1231–1241CrossRefPubMedGoogle Scholar
  58. Tovar D, Zambonino J, Cahu C, Gatesoupe FJ, Vázquez-Juárez R, Lésel R (2002) Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 204(1–2):113–123CrossRefGoogle Scholar
  59. Tovar-Ramírez D, Mazurais D, Gatesoupe JF, Quazuguel P, Cahu CL, Zambonino-Infante JL (2010) Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300(1–4):142–147CrossRefGoogle Scholar
  60. Vlková E, Grmanová M, Rada V, Homutová I, Dubná S (2009) Selection of probiotic bifidobacteria for lambs. Czech J Anim Sci 54:552–565CrossRefGoogle Scholar
  61. Vohra A, Syal P, Madan A (2016) Probiotic yeasts in livestock sector. Anim Feed Sci Technol 219:31–47CrossRefGoogle Scholar
  62. Wang W, Li Z, Han Q, Guo Y, Zhang B, Dinca R (2016) Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers. Br J Nutr 116(11):1878–1888CrossRefPubMedGoogle Scholar
  63. Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14(6):813–825CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zanello G, Berri M, Dupont J, Sizaret PY, D'Inca R, Salmon H, Meurens F (2011) Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One 6(4):e18573CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zicarelli F, Addi L, Tudisco R, Calabrò S, Lombardi P, Cutrignelli MI, Infascelli F (2016) The influence of diet supplementation with Saccharomyces cerevisiae or Saccharomyces cerevisiae plus Aspergillus oryzae on milk yield of Cilentana grazing dairy goats. Small Rumin Res 135:90–94CrossRefGoogle Scholar
  66. Zoumpopoulou G, Kazou M, Alexandraki V, Angelopoulou A, Papadimitriou K, Pot B, Tsakalidou E (2018) Probiotics and prebiotics: an overview on recent trends. In: Probiotics and prebiotics in animal health and food safety. Springer, Cham, p 1–34Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Immunology & Vaccinology GroupCentro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  2. 2.Laboratorio de Sanidad AnimalUniversidad Autónoma de Baja California SurLa PazMexico
  3. 3.Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of BiologyUniversity of MurciaMurciaSpain

Personalised recommendations