Advertisement

Hydroperoxides derived from marine sources: origin and biological activities

  • Vera A. Vil
  • Tatyana A. Gloriozova
  • Alexander O. Terent’ev
  • Nick Savidov
  • Valery M. DembitskyEmail author
Mini-Review
  • 74 Downloads

Abstract

Hydroperoxides are a small and interesting group of biologically active natural marine compounds. All these metabolites contain a group (R-O-O-H). In this mini-review, studies of more than 80 hydroperoxides isolated from bacteria, fungi, algae, and marine invertebrates are described. Hydroperoxides from the red, brown, and green algae exhibit high antineoplastic, anti-inflammatory, and antiprotozoal activity with a confidence of 73 to 94%. Hydroperoxides produced by soft corals showed antineoplastic and antiprotozoal activity with confidence from 81 to 92%. Metabolites derived from sea sponges, mollusks, and other invertebrates showed antineoplastic and antiprotozoal (Plasmodium) activity with confidence from 80 to 90%.

Keywords

Hydroperoxides Microorganisms Fungi Algae Invertebrates Activities 

Notes

Funding information

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences for 2013-2020 (RFBR; V.V., student grant № 18-33-00651).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Akakabe Y, Matsui K, Kajiwara T (2001) Enantioselective 2-hydroperoxylation of long-chain fatty acids in marine algae. Fish Sci 67:328–332CrossRefGoogle Scholar
  2. Anthoni U, Larsen C, Nielsen PH, Christophersen C (1987) Haphazard isolation of a peroxide from diethyl ether, autoxidation of diethyl ether and structure of mozuku toxin A. Acta Chem Scand B 41:216–218CrossRefGoogle Scholar
  3. Barlow RB (1979-1980) Structure-activity relationships. Trends Pharmacol Sci 1(1):109–111Google Scholar
  4. Berthon JY, Nachat-Kappes R, Bey M, Cadoret JP, Renimel I, Filaire E (2017) Marine algae as attractive source to skin care. Free Radic Res 51(6):555–567PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bezhentsev VM, Druzhilovskiy DS, Ivanov SM, Filimonov DA, Sastry GN, Poroikov VV (2017) Web resources for discovery and development of new medicines. Pharm Chem J 51(2):91–99CrossRefGoogle Scholar
  6. Bila M, Rasheed T, Sosa-Hernández JE, Raza A, Nabee F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements - a review. Mar Drugs 16(2):65–78CrossRefGoogle Scholar
  7. Bonanno G, Orlando-Bonaca M (2018) Chemical elements in Mediterranean macroalgae. A review. Ecotoxicol Environ Saf 148:44–71PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bonnard I, Jhaumeer-Laulloo SB, Bontemps N, Banaigs B, Aknin M (2010) New lobane and cembrane diterpenes from two comorian soft corals. Mar Drugs 8:359–372PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boonprab K, Matsui K, Akakabe Y, Yotsukura N, Kajiwara T (2004) Arachidonic acid conversion by lipoxygenase in the brown alga, Laminaria angustata. Kasetsart J Nat Sci 38:72–77Google Scholar
  10. Carbone M, Muniain C, Castelluccio F, Iannicelli O, Gavagnin M (2013) First chemical study of the sacoglossan Elysia patagonica: isolation of a γ-pyrone propionate hydroperoxide. Biochem Syst Ecol 49:172–175CrossRefGoogle Scholar
  11. Casteel DA (1992) Peroxy natural products. Nat Prod Rep 9:289–312PubMedCrossRefPubMedCentralGoogle Scholar
  12. Casteel DA (1999) Peroxy natural products. Nat Prod Rep 16:55–73CrossRefGoogle Scholar
  13. Catarino MD, Silva AMS, Cardoso SM (2018) Phycochemical constituents and biological activities of Fucus spp. Mar Drugs 16(8):E249.  https://doi.org/10.3390/md16080249 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen SP, Chao CH, Huang HC, Wu YC, Lu CK, Dai CF, Sheu JH (2006) New β-caryophyllene-derived terpenoids from the formosan soft coral Sinularia gibberosa. Bull Chem Soc Jpn 79:1547–1551CrossRefGoogle Scholar
  15. Chen BW, Wu YC, Chiang MY, Su JH, Wang WH, Fan TY, Sheu JH (2009) Eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Tetrahedron 65:7016–7022CrossRefGoogle Scholar
  16. Chen WT, Li Y, Guo YW (2012) Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharm Sinica B 2(3):227–237Google Scholar
  17. Chen SP, Chen BW, Dai CF, Sung P-J, Wu YC, Sheu J-H (2012) Sarcophytonins F and G, new dihydrofuranocembranoids from a dongsha atoll soft coral Sarcophyton sp. Bull Chem Soc Jpn 85(8):920–922CrossRefGoogle Scholar
  18. Chen D, Chen W, Liu D, van Ofwegen L, Proksch P, Lin W (2013) Asteriscane-type sesquiterpenoids from the soft coral Sinularia capillosa. J Nat Prod 76(9):1753–1763PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, Yan X (2018) Diterpenes from the marine algae of the genus Dictyota. Mar Drugs 16(5).  https://doi.org/10.3390/md16050159
  20. Cheng SY, Dai CF, Duh CY (2007) Sesquiterpenoids and artificial 19-oxygenated steroids from the formosan soft coral Nephthea erecta. J Nat Prod 70:1449–1453PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cheong KL, Qiu HM, Du H, Liu Y, Khan BM (2018) Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23(10):E2451.  https://doi.org/10.3390/molecules23102451 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ciavatta ML, Manzo E, Mollo E, Mattia CA, Tedesco C, Irace C, Guo Y-W, Li X-B, Cimino G, Gavagnin M (2011) Tritoniopsins A–D, cladiellane-based diterpenes from the South China Sea nudibranch Tritoniopsis elegans and its prey Cladiella krempfi. J Nat Prod 74(9):1902–1907PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cole KM, Sheath RG (1990) Biology of the red algae. Cambridge University Press, New York, p 517Google Scholar
  24. Cutignano A, Fontana A, Renzulli L, Cimino G (2003) Placidenes C−F, novel α-pyrone propionates from the Mediterranean sacoglossan Placida dendritica. J Nat Prod 66:1399–1401PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35(1):1–51CrossRefGoogle Scholar
  26. Dembitsky VM (2006a) Natural neo acids and neo alkanes: their analogs and derivatives. Lipids 41(4):309–340PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dembitsky VM (2006b) Biogenic iodine and iodine-containing metabolites. Nat Prod Commun 1:139–175Google Scholar
  28. Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dembitsky VM (2014) Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 21(12):1559–1581PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dembitsky VM (2015a) Bioactive fungal endoperoxides. Medical Mycol 1(5):1–7Google Scholar
  31. Dembitsky VM (2015b) Natural hydroperoxides as potential terapeutical agents. SDRP J Plant Sci 1:1–9Google Scholar
  32. Dembitsky VM (2015c) Astonishing diversity of natural peroxides as potential therapeutic agents. J Mol Genet Med 9:1–18Google Scholar
  33. Dembitsky VM (2017a) Paradigm shifts in fungal secondary metabolite research: unusual fatty acids incorporated into fungal peptides. Int J Curr Res Biosci Plant Biol 4(12):7–29CrossRefGoogle Scholar
  34. Dembitsky VM (2017b) Unusual fatty acids incorporated into natural peptides derived from seaweeds and invertebrates. Eur J Biomed Pharm Sci 4(12):66–84Google Scholar
  35. Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43(5):403–448PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dembitsky VM, Maoka T (2007) Allenic and cumulenic lipids. Prog Lipid Res 46(6):328–375PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dembitsky VM, Rozentsvet OA (1993) Phospholipid composition of some marine red algae. Phytochemistry 29:3149–3152CrossRefGoogle Scholar
  38. Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41(4):315–336CrossRefGoogle Scholar
  39. Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 29(11):3417–3421CrossRefGoogle Scholar
  40. Dembitsky VM, Pechenkina-Shubina EE, Rozentsvet OA (1991) Glycolipids and fatty acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry 30(7):2279–2283CrossRefGoogle Scholar
  41. Dembitsky VM, Rezankova H, Rezanka T, Hanus LO (2003) Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochem Syst Ecol 31:1125–1145CrossRefGoogle Scholar
  42. Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini Rev Med Chem 7(6):571–589PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dembitsky VM, Savidov N, Poroikov VV, Gloriozova TA, Imbs AB (2018) Naturally occurring aromatic steroids and their biological activities. Appl Microbiol Biotechnol 102(11):4663–4674PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dewick PM (2001) Medicinal natural products. A Biosynthetic Approach. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  45. Duh CY, Chia MC, Wang SK, Chen HJ, El-Gamal AAH, Dai CF (2001) Cytotoxic dolabellane diterpenes from the formosan soft coral Clavularia inflate. J Nat Prod 64:1028–1031PubMedCrossRefPubMedCentralGoogle Scholar
  46. Duh CY, El-Gamal AA, Chiang CY, Chu CJ, Wang SK, Dai CF (2002) New cytotoxic xenia diterpenoids from the Formosan soft coral Xenia umbellata. J Nat Prod 65(12):1882–1885PubMedCrossRefPubMedCentralGoogle Scholar
  47. Edwards M (2008) Green algae strategy: end biowar I and engineer sustainable food and biofuels paperback. Talent DNA, pp. 224Google Scholar
  48. El-Gamal AAH, Wang SK, Dai CF, Chen IG, Duh CY (2005) Prenylbicyclogermacrane diterpenoids from the formosan soft coral Nephthea pacifica. J Nat Prod 68:74–77PubMedCrossRefPubMedCentralGoogle Scholar
  49. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457CrossRefGoogle Scholar
  50. Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004CrossRefGoogle Scholar
  51. Flowers AE, Garson MJ, Byriel KA, Kennard CHL (1998) Two new isonakafurans from the Great Barrier Reef sponge Dysidea sp. nov. Aust J Chem 51:195–200CrossRefGoogle Scholar
  52. Fu X, Hong EP, Schmitz FJ (2000) New polypropionate pyrones from the Philippine sacoglossan mollusc Placobranchus ocellatus. Tetrahedron 56:8989–8993CrossRefGoogle Scholar
  53. Fusetani N, Hashimoto K (1981) Diethyl peroxides. Probably responsible for mozuku poisoning. Bull Jpn Soc Sci Fish 47:1059–1063CrossRefGoogle Scholar
  54. Girotti AW, Korytowski W (2017) Cholesterol hydroperoxide generation, translocation, and reductive rurnover in biological systems. Cell Biochem Biophys 75:413.  https://doi.org/10.1007/s12013-017-0799-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gonzalez E, Johnson KM, Pallan PS, Phan TTN, Zhang W, Lei L, Wawrzak Z, Yoshimoto FK, Egli M, Guengerich FP (2018) Inherent steroid 17α,20-lyase activity in defunct cytochrome P450 17A enzymes. J Biol Chem 293(2):541–556PubMedCrossRefPubMedCentralGoogle Scholar
  56. Guyot M, Morel E, Belaud C (1983) A cytotoxic hydroperoxide of marine origin and related compounds: synthesis and biological study. J Chem Res 8:1823–1833Google Scholar
  57. Harizani M, Ioannou E, Roussis V (2016) The Laurencia paradox: an endless source of chemodiversity. Prog Chem Org Nat Prod 102:91–252PubMedCrossRefPubMedCentralGoogle Scholar
  58. Harvis CA, Burch MT, Fenical W (1988) New marine diterpenoids, including a unique hydroperoxide, from a Caribbean gorgonian coral of the genus Pseudopterogorgia. Tetrahedron Lett 29:4361–4364CrossRefGoogle Scholar
  59. He Z, Zhang A, Ding L, Lei X, Sun J (2010) Chemical composition of the green alga Codium divaricatum Holmes. Fitoterapia 81:1125–1128PubMedCrossRefPubMedCentralGoogle Scholar
  60. Howard BM, Fenical W, Finer J, Hirotsu K, Clardy J (1977) Neoconcinndiol hydroperoxide, a novel marine diterpenoid from the red alga Laurencia. J Am Chem Soc 99:6440–6441PubMedCrossRefPubMedCentralGoogle Scholar
  61. Huang AHC (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol 176(3):1894–1918PubMedCrossRefPubMedCentralGoogle Scholar
  62. Huang C-Y, Su J-H, Chen B-W, Wen Z-H, Hsu C-H, Dai C-F, Sheu J-H, Sung P-J (2011) Nardosinane-type sesquiterpenoids from the formosan soft coral Paralemnalia thyrsoides. Mar Drugs 9(9):1543–1553PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ikawa M, Sasner JJ, Haney JF (2001) Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia 443:19–22CrossRefGoogle Scholar
  64. Ismail FMD, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. Eur J Med Chem 44(9):3373–3387PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jain S, Abraham I, Carvalho P, Kuang YH, Shaala LA, Youssef DTA, Avery MA, Chen ZS, El Sayed KA (2009) Sipholane triterpenoids: chemistry, reversal of ABCB1/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Nat Prod 72:1291–1298PubMedCrossRefPubMedCentralGoogle Scholar
  66. Ji NY, Li XM, Li K, Wang BG (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C(15)-acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499–1502PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kilimnik A, Dembitsky VM (2016) Anti-melanoma agents derived from fungal species. Mathews J Pharm Sci 1(1):1–16Google Scholar
  68. Kim SK, Ta QV (2011) Potential beneficial effects of marine algal sterols on human health. Adv Food Nutr Res 64:191–198PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kim AD, Lee Y, Kang SH, Kim GY, Kim HS, Hyun JW (2013) Cytotoxic effect of clerosterol isolated from Codium fragile on A2058 human melanoma cells. Mar Drugs 11:418–430PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kitagawa I, Cui Z, Son BW, Kobayashi M, Kyogoku Y (1987) Marine natural products. XVII. Nephtheoxydiol, a new cytotoxic hydroperoxy-germacrane sesquiterpene, and related sesquiterpenoids from an Okinawan soft coral of Nephthea sp. (Nephtheidae). Chem Pharm Bull (Tokyo) 35(1):124–135CrossRefGoogle Scholar
  71. Kobayashi M, Son BW, Kyogoku Y, Kitagawa I (1984) Clavukerin C, a new trinor-guaiane sesquiterpene having a hydroperoxy function, from the Okinawan soft coral Clavularia koellikeri. Chem Pharm Bull 32(4):1667–1670CrossRefGoogle Scholar
  72. Kolesnikova SA, Lyakhova EG, Kalinovsky AI, Dmitrenok PS, Dyshlovoy SA (2009) Diterpenoid hydroperoxides from the far-eastern brown alga Dictyota dichotoma. Aust J Chem 62:1185–1188CrossRefGoogle Scholar
  73. Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J Appl Phycol 11:511.  https://doi.org/10.1023/A:1008162624027 CrossRefGoogle Scholar
  74. Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomedicine 20(13):1145–1159PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kumar SS, Jayendra K (2012) Cytotoxity of marine algal steroids in HeLa cells - 2D & 3D QSAR approach. Int J Pharm Bio Sci 3:204–212Google Scholar
  76. Lagunin AA, Goel RK, Gawande DY, Priynka P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV (2014) Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 31(11):1585–1611PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lai DW, Liu D, Deng ZW, van Ofwegen L, Proksch P, Lin WH (2012) Antifouling eunicellin-type diterpenoids from the gorgonian Astrogorgia sp. J Nat Prod 75:1595–1602PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lei H (2016) Diterpenoids of gorgonian corals: chemistry and bioactivity. Chem Biodivers 13:345–365PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li P-J, Wu Y-C, Chang F-R, Sheu J-H (2009) Studies on the secondary metabolites from the formosan soft corals Sinularia scabra and Lemnalia flava and the chemical modifications of lobohedleolide. http://www.ifremer.fr/avano
  80. Li XL, He WF, Li J, Lan LF, Li XW, Guo YW (2015) New laurane-type sesquiterpenoids from the Chinese red alga Laurencia okamurai Yamada. J Asian Nat Prod Res 17(12):1146–1152PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lin WY, Lu Y, Su JH, Wen ZH, Dai CF, Kuo YH, Sheu JH (2011) Bioactive cembranoids from the dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs 9(6):994–1006PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lin WY, Lu Y, Chen BW, Huang CY, Su JH, Wen ZH, Dai CF, Kuo YH, Sheu JH (2012) Sarcocrassocolides M-O, bioactive cembranoids from the Dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs 10(3):617–626PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu DZ, Liu JK (2013) Peroxy natural products. Nat Prod Bioprospect 3:161–206PubMedCentralCrossRefGoogle Scholar
  84. Lo J-M, Wang W-L, Chiang Y-M, Chen C-M (2001) Ceramides from the Taiwan red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Chinese Chem Soc 48:821–826CrossRefGoogle Scholar
  85. Miyashita K, Mikamia N, Hosokawa M (2013) Chemical and nutritional characteristics of brown seaweed lipids: a review. J Funct Food 5:1507–1517CrossRefGoogle Scholar
  86. Moghadam MH, Firouzi J, Saeidnia S, Hajimehdipoor H, Jamili S, Rustaiyan A, Gohari AR (2013) A cytotoxic hydroperoxy sterol from the brown alga, Nizamuddinia zanardinii. Daru 21(1):24.  https://doi.org/10.1186/2008-2231-21-24 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Morita M, Ohno O, Suenaga K (2012a) Biselyngbyolide A, a novel cytotoxic macrolide from the marine cyanobacterium Lyngbya sp. Chem Lett 41:165–167CrossRefGoogle Scholar
  88. Morita M, Ohno O, Teruya T, Yamori T, Inuzuka T (2012b) Isolation and structures of biselyngbyasides B, C, and D from the marine cyanobacterium Lyngbya sp., and the biological activities of biselyngbyasides. Tetrahedron 68:5984–5990CrossRefGoogle Scholar
  89. Nowicka B, Kruk J (2012) Plastoquinol is more active than α−tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim Biophys Acta 1817:389–394PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ospina CA, Rodríguez AD, Ortega-Barria E, Capson TL (2003) Briarellins J−P and polyanthellin A: new eunicellin-based diterpenes from the gorgonian coral Briareum polyanthes and their antimalarial activity. J Nat Prod 66:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pereira L, Neto JM (2014) Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  92. Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10(9):1920–1935PubMedPubMedCentralCrossRefGoogle Scholar
  93. Permeh P, Saeidnia S, Mashinchian-Moradi A, Gohari AR (2012) Sterols from Sargassum oligocystum, a brown algae from the Persian Gulf, and their bioactivity. Nat Prod Res 26(8):774–777PubMedCrossRefPubMedCentralGoogle Scholar
  94. Phan C-S, Kamada T, Ishii T, Hamada T, Vairappan CS (2017) 12-Epi-9-deacetoxyxenicin, new cytotoxic diterpenoid from a Bornean soft coral, Xenia sp. Nat Prod Res.  https://doi.org/10.1080/14786419.2017.1410812
  95. Qi SH, Zhang S, Huang JS, Xiao ZH, Wu J (2004) Glycerol derivatives and sterols from Sargassum parvivesiculosum. Chem Pharm Bull (Tokyo) 52:986–988CrossRefGoogle Scholar
  96. Qin JJ, Jin HZ, Zhu JX, Fu JJ, Hu XJ (2010) Japonicones E-L, dimeric sesquiterpene lactones from Inula japonica Thunb. Planta Med 76:278–283PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rahelivao MP, Gruner M, Lübken T, Islamov D, Kataeva O, Andriamanantoanina H, Bauer I, Knölker HJ (2016) Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar. Org Biomol Chem 14:989–1001PubMedCrossRefPubMedCentralGoogle Scholar
  98. Rodríguez AD, Cóbar OM (1995) The briarellins, new eunicellin-based diterpenoids from a Caribbean gorgonian, Briareum asbestinum. Tetrahedron 51:6869–6880CrossRefGoogle Scholar
  99. Roy PK, Ashimine R, Miyazato H, Taira J, Ueda K (2016) Endoperoxy and hydroperoxy cadinane-type sesquiterpenoids from an Okinawan soft coral, Sinularia sp. Archiv Pharm Res 39(6):778–784CrossRefGoogle Scholar
  100. Sabry OM, Andrews S, McPhail KL, Goeger DE, Yokochi A (2005) Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. J Nat Prod 68:1022–1030PubMedCrossRefPubMedCentralGoogle Scholar
  101. Savidov N, Gloriozova TA, Dembitsky VM (2018) Pharmacological activities of sulphated steroids derived from marine sources. Life Sci Press 2(1):48–58.  https://doi.org/10.28964/LifesciPress-2-107 CrossRefGoogle Scholar
  102. Shanab SMM, Hafez RM, Fouad AS (2018) A review on algae and plants as potential source of arachidonic acid. J Adv Res 11:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sheu JH, Liaw C-C, Duh C-Y (1995) Oxygenated clerosterols isolated from the marine alga Codium arabicum. J Nat Prod 58:1521–1526CrossRefGoogle Scholar
  104. Sheu J, Wang G, Sung P, Chiu Y, Duh C (1997) Cytotoxic sterols from the formosan brown algae Turbinaria ornata. Planta Med 63:571–572PubMedCrossRefPubMedCentralGoogle Scholar
  105. Shi YP, Rodríguez AD, Barnes CL, Sánchez JA, Raptis RG, Baran P (2002) New terpenoid constituents from Eunicea pinta. J Nat Prod 65:1232–1241PubMedCrossRefPubMedCentralGoogle Scholar
  106. Shi Z-Z, Miao F-P, Fang S-T, Liu X-H, Yin X-L, Ji N-Y (2017) Sesteralterin and tricycloalterfurenes A–D: terpenes with rarely occurring frameworks from the marine-alga-epiphytic fungus Alternaria alternata k21-1. J Nat Prod 80(9):2524–2529PubMedCrossRefPubMedCentralGoogle Scholar
  107. Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anti Cancer Agents Med Chem 8(2):132–170CrossRefGoogle Scholar
  108. Stengel DB, Connan S (2015) Natural products from marine algae: methods and protocols. Humana Press, SwitzerlandCrossRefGoogle Scholar
  109. Su JH, Ahmed AF, Sung PJ, Chao CH, Kuo YH, Sheu JH (2006) Manaarenolides A-I, diterpenoids from the soft coral Sinularia manaarensis. J Nat Prod 69(8):1134–1139PubMedCrossRefPubMedCentralGoogle Scholar
  110. Su Y-D, Su J-H, Hwang T-L, Wen Z-H, Sheu J-H, Wu Y-C, Sung P-J (2017) Briarane diterpenoids isolated from octocorals between 2014 and 2016. Mar Drugs 15(2):44.  https://doi.org/10.3390/md15020044 CrossRefPubMedCentralGoogle Scholar
  111. Sung P-J, Sheu J-H, Xu J-P (2002) Survey of briarane-type diterpenoids of marine origin. Heterocycles 57:535–579CrossRefGoogle Scholar
  112. Sung P-J, Lin M-R, Chiang MY, Huang I-C, Syu S-M, Fang L-F, Wang W-H, Sheu J-H (2010) Briarenolide D, a new hydroperoxybriarane diterpenoid from a cultured octocoral Briareum sp. Chem Lett 39(10):1030–1032CrossRefGoogle Scholar
  113. Tang HF, Yi YH, Yao XS, Xu QZ, Zhang SY, Lin HW (2002) Bioactive steroids from the brown alga Sargassum carpophyllum. J Asian Nat Prod Res 4(2):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  114. Tchokouaha Yamthe LR, Appiah-Opong R, Tsouh Fokou PV, Tsabang N, Fekam Boyom F, Nyarko AK, Wilson MD (2017) Marine algae as source of novel anti-leishmanial drugs: a review. Mar Drugs 15:323–331PubMedCentralCrossRefGoogle Scholar
  115. Teasdale ME, Shearer TL, Engel S, Alexander TS, Fairchild CR (2012) Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. J Org Chem 77:8000–8006PubMedPubMedCentralCrossRefGoogle Scholar
  116. Teixeira VL, Barbosa JP, Rocha FD, Kaplan MAC, Houghton PJ (2006) Hydroperoxysterols from Dictyopteris justii and Spatoglossum schroederi. Nat Prod Commun 4:293–297Google Scholar
  117. Terent’ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russian Chem Rev 80:807–828CrossRefGoogle Scholar
  118. Terent’ev AO, Borisov DA, Vil VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tropina VI, Krivykh OV, Sadchikova NP, Terent’ev AO, Krylov IB (2010) Synthesis and antimicrobial activity of geminal bis-hydroperoxides. Pharm Chem J 44:248–250CrossRefGoogle Scholar
  120. Tseng Y-J, Shen K-P, Lin H-L, Huang C-Y, Dai C-F, Sheu J-H (2012) Lochmolins A–G, new sesquiterpenoids from the soft coral Sinularia lochmodes. Mar Drugs 10(7):1572–1581PubMedPubMedCentralCrossRefGoogle Scholar
  121. Vaskovsky VE, Khotimchenko SV, Xia B, Hefang L (1996) Polar lipids and fatty acids of some marine macrophytes from the Yellow Sea. Phytochemistry 42:1347–1356CrossRefGoogle Scholar
  122. Vijayraghavan MR (1997) Brown algae. APH Publishing Corp, p 324Google Scholar
  123. Vil VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881.  https://doi.org/10.3390/molecules22111881 CrossRefPubMedCentralGoogle Scholar
  124. Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM (2018a) Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102(18):7657–7667CrossRefGoogle Scholar
  125. Vil VA, dos Gomes GP, Ekimova MV, Lyssenko KA, Syroeshkin MA, Nikishin GI, Alabugin IV, Terent’ev AO (2018b) Five roads that converge at the cyclic peroxy-criegee intermediates: BF3-catalyzed synthesis of β-hydroperoxy-β-peroxylactones. J Org Chem 83(21):13427–13445PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wang SK, Huang MJ, Duh CY (2006) Cytotoxic constituents from the formosan soft coral Clavularia inflata var. luzoniana. J Nat Prod 69:1411–1416PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wang F, Fang Y, Zhu T, Zhang M, Lin A, Gu Q, Zhu W (2008a) Seven new prenylated indole diketopiperazine alkaloids from holothurian-derived fungus Aspergillus fumigatus. Tetrahedron 64:7986–7991CrossRefGoogle Scholar
  128. Wang W, Li H, Wang Y, Xia X, Okada Y (2008b) Chemical constituents from brown alga Sargassum fusiforme. Zhongcaoyao 39:657–661Google Scholar
  129. Wang P, Tang H, Liu B-S, Li T-J, Sun P, Zhu W, Luo Y-P, Zhang W (2013) Tumor cell growth inhibitory activity and structure–activity relationship of polyoxygenated steroids from the gorgonian Menella kanisa. Steroids 78:951–958PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wei X, Rodríguez AD, Baran P, Raptis RG (2010) Dolabellane-type diterpenoids with antiprotozoan activity from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. J Nat Prod 73:925–934PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982PubMedCrossRefPubMedCentralGoogle Scholar
  132. Xiang W, Chang LC (2006) Calyculatine: a new dolabellane diterpenoid from the marine sponge Eunicea calyculata. Planta Med 72(8):735-739Google Scholar
  133. Xiang W, Leng CC (2006) Calyclulatine: a new dolabellane diterpenoid from the marine sponge Eunicea calyculata. Planta Med 72:735–739PubMedCrossRefPubMedCentralGoogle Scholar
  134. Yagi K (1994) Lipid peroxides and related radicals in clinical medicine. In: Armstrong D (ed) Free radicals in diagnostic medicine. Advances in experimental medicine and biology, vol 366. Springer, BostonGoogle Scholar
  135. Yamada Y (2002) Studies on discovery and synthesis of bioactive marine organic molecules. Yakugaku Zasshi 122(10):727–743PubMedCrossRefPubMedCentralGoogle Scholar
  136. Yang X-X, Su Y-Z, C-Er J, Cai P-M, Jia H-R (2018) A new dimeric sesquiterpene and other related derivatives from the marine red alga Laurencia okamurai. Biochem Syst Ecol 79:57–59CrossRefGoogle Scholar
  137. Yao G, Vidor NB, Foss AP, Chang LC (2007) Lemnalosides A-D, decalin-type bicyclic diterpene glycosides from the marine soft coral Lemnalia sp. J Nat Prod 70(6):901–905PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yin SW, Shi YP, Li XM, Wang BG (2006) A new cembranoid diterpene and other related metabolites from the South China Sea soft coral Lobophytum crassum. Helv Chim Acta 89:567–569CrossRefGoogle Scholar
  139. Yu XQ, He WF, Liu DQ, Feng MT, Fang Y (2014) A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 103:162–170PubMedCrossRefPubMedCentralGoogle Scholar
  140. Zhao X, Zheng GW, Niu XM, Li WQ, Wang FS, Li SH (2009) Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J Agric Food Chem 57:478–482PubMedCrossRefPubMedCentralGoogle Scholar
  141. Zhao M, Yin J, Jiang W, Ma M, Lei X, Xiang Z, Dong J, Huang K, Yan P (2013) Cytotoxic and antibacterial cembranoids from a South China Sea soft coral, Lobophytum sp. Mar Drugs 11:1162–1172PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhu JX, Qin JJ, Jin HZ, Zhang WD (2013) Japonicones Q-T, four new dimeric sesquiterpene lactones from Inula japonica Thunb. Fitoterapia 84:40–46PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zubía E, Ortega MJ, Carballo JL (2008a) Sesquiterpenes from the sponge Axinyssa isabela. J Nat Prod 71:2004–2010PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zubía E, Ortega MJ, Hernández-Guerrero CJ, Carballo JL (2008b) Isothiocyanate sesquiterpenes from a sponge of the genus Axinyssa. J Nat Prod 71:608–614PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vera A. Vil
    • 1
  • Tatyana A. Gloriozova
    • 2
  • Alexander O. Terent’ev
    • 1
  • Nick Savidov
    • 3
  • Valery M. Dembitsky
    • 1
    • 3
    • 4
    Email author
  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biomedical ChemistryMoscowRussia
  3. 3.Centre for Applied Research and InnovationLethbridge CollegeLethbridgeCanada
  4. 4.Biochemical LaboratoryNational Scientific Center of Marine BiologyVladivostokRussia

Personalised recommendations