Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 5, pp 2251–2262 | Cite as

The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum

  • Pingping Gao
  • Muchun Li
  • Kai JinEmail author
  • Yuxian XiaEmail author
Applied genetics and molecular biotechnology

Abstract

Conidiation capacity and conidial quality are very important for the production and application of mycopesticides. Most filamentous ascomycetous fungi have two distinct patterns of conidiation. Conidiation through microcycle conidiation proceeds to more rapidly achieve a maximum of conidial yield than normal conidiation and hence is of greater merit for exploitation in mass production of fungal insect pathogens, such as Metarhizium acridum. In this study, the mechanism underlying the conidiation pattern shift in M. acridum was explored by characterization of the fungal homeobox gene MaH1. MaH1 was evidently localized to the nuclei of hyphae and transcriptionally expressed at a maximal level when conidiation began. Intriguingly, deletion of MaH1 in M. acridum resulted in a shift of normal conidiation to microcycle conidiation on one-quarter strength Sabouraud’s dextrose agar medium, and hence accelerated conidiation and increased conidial yield. In the deletion mutant, moreover, conidia became larger in size and hyphae cells were shorter in length while conidial virulence and stress tolerance were not altered. As revealed by digital gene expression profiling, MaH1 controlled the shift of conidiation patterns by mediating transcription of a set of genes related to hyphal growth, cell differentiation, conidiation, and some important signaling pathways. These findings indicate that MaH1 and its downstream genes can be exploited to increase the conidial yield for more efficient production of mycopesticides.

Keywords

Metarhizium acridum Homeobox gene Transcription factor Microcycle conidiation Conidiation pattern shift 

Notes

Funding

This work was supported by the Natural Science Foundation of China (no. 31272090), the Natural Science Foundation Project of Chongqing (cstc 2018jcyjAX0554), and the Fundamental Research Funds for the Central Universities (106112017CDJQJ298831).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2018_9558_MOESM1_ESM.pdf (322 kb)
ESM 1 (PDF 321 kb)

References

  1. Ahearm DG, Price D, Simmons RB, Mayo A, Zhang ST, Crow SA Jr (2007) Microcycle conidiation and medusa head conidiophores of aspergilli on indoor construction materials and air filters from hospitals. Mycologia 99(1):1–6CrossRefGoogle Scholar
  2. Anderson JG, Smith JE (1971) The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation). J Gen Microbiol 69(2):185–197CrossRefGoogle Scholar
  3. Arnaise S, Zickler D, Poisier C, Debuchy R (2001) pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Mol Microbiol 39(1):54–64CrossRefGoogle Scholar
  4. Bosch A, Yantorno O (1999) Microcycle conidiation in the entomopathogenic fungus Beauveria bassiana Bals. (Vuill.). Process Biochem 34(6–7):707–716CrossRefGoogle Scholar
  5. Cao Y, Zhu X, Jiao R, Xia Y (2012) The Magas1 gene is involved in pathogenesis by affecting penetration in Metarhizium acridum. J Microbiol Biotechnol 22(7):889–893CrossRefGoogle Scholar
  6. Cao Y, Du M, Luo S, Xia Y (2014) Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Appl Microbiol Biotechnol 98(19):8253–8265CrossRefGoogle Scholar
  7. Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang PK, Wei Q, Lebar M, Carter-Wientjes C, Majumdar R, Mitra C, Banerjee S, Chanda A (2017) The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins 9(10):315CrossRefGoogle Scholar
  8. Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek C, Druzhinina I (eds) Environmental and microbial relationships. The mycota IV, 2nd edn. Springer-Verlag, Berlin, pp 159–187Google Scholar
  9. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357CrossRefGoogle Scholar
  10. dos Reis MC, Pelegrinelli Fungaro MH, Delgado Duarte RT, Furlaneto L, Furlaneto MC (2004) Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods 58(2):197–202CrossRefGoogle Scholar
  11. El-Ganiny AM, Sheoran I, Sanders DA, Kaminskyj SG (2010) Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol 47(7):629–635CrossRefGoogle Scholar
  12. Federici BA, Bonning BC, St Leger RJ (2008) Improvement of insect pathogens as insecticides through genetic engineering. In: Hill C, Sleator R (eds) Patho-biotechnology. Landes Bioscience, Austin, pp 15–40Google Scholar
  13. Gao Q, Jin K, Ying S, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie X, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma L, St Leger RJ, Zhao G, Pei Y, Feng M, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7(1):e1001264CrossRefGoogle Scholar
  14. Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20:147–173CrossRefGoogle Scholar
  15. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K (1994) Homeodomain-DNA recognition. Cell 78(2):211–223CrossRefGoogle Scholar
  16. Green KA, Becker Y, Tanaka A, Takemoto D, Fitzsimons HL, Seiler S, Lalucque H, Silar P, Scott B (2017) SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne. Mol Microbiol 103(4):657–677CrossRefGoogle Scholar
  17. Hajek AE, McManus ML, Delalibera I (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41(1):1–13CrossRefGoogle Scholar
  18. Hanlin R (1994) Microcycle conidiation — a review. Mycoscience 35(1):113–123CrossRefGoogle Scholar
  19. He M, Xia Y (2009) Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. FEMS Microbiol Lett 291(1):127–135CrossRefGoogle Scholar
  20. Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21(3):230–248CrossRefGoogle Scholar
  21. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41CrossRefGoogle Scholar
  22. Lapaire CL, Dunkle LD (2003) Microcycle conidiation in Cercospora zeae-maydis. Phytopathology 93(2):193–199CrossRefGoogle Scholar
  23. Laughon A (1991) DNA binding specificity of homeodomains. Biochemistry 30(48):11357–11367CrossRefGoogle Scholar
  24. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biochemistry 9(10):963–967Google Scholar
  25. Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Gen Genomics 272(6):639–650CrossRefGoogle Scholar
  26. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276(5688):565–570CrossRefGoogle Scholar
  27. Liu Q, Xiao CL (2005) Influence of nutrient and environmental factors on conidial germination of Potebniamyces pyri. Phytopathology 95(5):572–580CrossRefGoogle Scholar
  28. Liu W, Xie S, Zhao X, Chen X, Zheng W, Lu G, Xu JR, Wang Z (2010) A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol Plant-Microbe Interact 23(4):366–375CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25(4):402–408CrossRefGoogle Scholar
  30. Luo S, He M, Cao Y, Xia Y (2013) The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environ Microbiol 15(11):2966–2979Google Scholar
  31. Michaeli S, Fait A, Lagor K, Nunes-Nesi A, Grillich N, Yellin A, Bar D, Khan M, Fernie AR, Turano FJ, Fromm H (2011) A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J 67(3):485–498CrossRefGoogle Scholar
  32. Mieslerová B, Lebeda A (2010) Influence of temperature and light conditions on germination, growth and conidiation of Oidium neolycopersici. J Phytopathol 158(9):616–627Google Scholar
  33. Nielsen J (1992) Modelling the growth of filamentous fungi. Adv Biochem Eng Biotechnol 46:187–223Google Scholar
  34. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259CrossRefGoogle Scholar
  35. Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15(6):669–677CrossRefGoogle Scholar
  36. Pazout J, Schröder P (1988) Microcycle conidiation in submerged cultures of Penicillium cyclopium attained without temperature changes. J Gen Microbiol 134(10):2685–2692Google Scholar
  37. Rangel DE, Braga GU, Anderson AJ, Roberts DW (2005) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invertebr Pathol 90(1):55–58CrossRefGoogle Scholar
  38. Scott MP, Tarnkun JW, Hartzell GW (1989) The structure and function of the homeodomain. Biochim Biophys Acta 989(1):25–48CrossRefGoogle Scholar
  39. Sekiguchi J, Gaucher GM, Costerton JW (1975) Microcycle conidiation in Penicillium urticae: an ultrastructural investigation of conidiogenesis. Can J Microbiol 21(12):2069–2083CrossRefGoogle Scholar
  40. Sethi K, Palani S, Cortés JC, Sato M, Sevugan M, Ramos M, Vijaykumar S, Osumi M, Naqvi NI, Ribas JC, Balasubramanian M (2016) A new membrane protein Sbg1 links the contractile ring apparatus and septum synthesis machinery in fission yeast. PLoS Genet 12(10):e1006383CrossRefGoogle Scholar
  41. Smith JE, Deans SG, Anderson JG, Davis B (1977) The nature of fungal sporulation. In: Meyrath J, Bu'Lock JD (eds) Biotechnology and fungal differentiation. Academic Press, New York, pp 17–41Google Scholar
  42. St Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93(13):6349–6354CrossRefGoogle Scholar
  43. Svingen T, Tonissen KF (2006) Hox transcription factors and their elusive mammalian gene targets. Heredity 97(2):88–96CrossRefGoogle Scholar
  44. Tiwari S, Thakur R, Goel G, Shankar J (2016) Nano-LC-Q-TOF analysis of proteome revealed germination of Aspergillus flavus conidia is accompanied by MAPK signalling and cell wall modulation. Mycopathologia 181(11–12):769–786CrossRefGoogle Scholar
  45. Traag BA, Kelemen GH, Van Wezel GP (2004) Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53(3):985–1000CrossRefGoogle Scholar
  46. Ulrych A, Goldová J, Petříček M, Benada O, Kofroňová O, Rampírová P, Petříčková K, Branny P (2013) The pleiotropic effect of WD-40 domain containing proteins on cellular differentiation and production of secondary metabolites in Streptomyces coelicolor. Mol BioSyst 9(6):1453–1469CrossRefGoogle Scholar
  47. Vézina C, Singh K, Sehgal SN (1965) Sporulation of filamentous fungi in submerged culture. Mycologia 57(5):722–736CrossRefGoogle Scholar
  48. Wang Z, Jin K, Xia Y (2016) Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 17(1):586CrossRefGoogle Scholar
  49. Wu Z, Wang S, Yuan Y, Zhang T, Liu J, Liu D (2016) A novel major facilitator superfamily transporter in Penicillium digitatum (PdMFS2) is required for prochloraz resistance, conidiation and full virulence. Biotechnol Lett 38(8):1349–1357CrossRefGoogle Scholar
  50. Zhang S, Peng G, Xia Y (2010) Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium. Biocontrol Sci Technol 20(8):809–819CrossRefGoogle Scholar
  51. Zheng W, Zhao X, Xie Q, Huang Q, Zhang C, Zhai H, Xu L, Lu G, Shim WB, Wang Z (2012) A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLoS One 7(9):e45432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Genetic Engineering Research Center, School of Life SciencesChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Engineering Research Center for Fungal InsecticideChongqingPeople’s Republic of China
  3. 3.Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education CommissionChongqingPeople’s Republic of China

Personalised recommendations