Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium

  • Phuong Dong Thi Nguyen
  • Nurul Asyifah Mustapha
  • Kiwao Kadokami
  • Rodolfo Garcia-Contreras
  • Thomas K. Wood
  • Toshinari MaedaEmail author
Environmental biotechnology


Quorum sensing (QS) plays a key role in activating bacterial functions through small molecules called autoinducers. In this study, the QS of Gram-negative bacteria in waste sewage sludge (WSS) was downregulated by adding the quorum quenching enzyme, AiiM lactonase, which cleaved the acyl-homoserine lactone (AHL) autoinducer signals from Gram-negative bacteria, and subsequently methane production was inhibited by over 400%. The pH was lowered after 2 days in the anaerobic fermentation whereas protease activity at the hydrolysis step was almost the same with or without AiiM. The production of acetic acid significantly increased during the fermentation in the presence of AiiM. The bacterial community at day 2 indicated that the population of Gram-positive bacteria increased in the presence of AiiM, and the percentage of Gram-negative bacteria decreased in the WSS containing AiiM. The change in the bacterial community in the presence of AiiM may be due to the different antimicrobial agents produced in the WSS because some of the Gram-positive bacteria were killed by adding the solid-phase extraction (SPE) fraction from the WSS without AiiM. In contrast, the SPE fraction with AiiM had reduced bactericidal activity against Gram-negative bacteria. Thus, bacterial signaling between Gram-negative bacteria is critical for methane production by the microbial consortia.


Anaerobic digestion Waste sewage sludge Quorum sensing AHL lactonase Gram-negative bacteria 



The authors wish to thank Dr. Tomohiro Morohoshi for providing a plasmid harboring an AHL lactonase.


This study was supported by Kitakyushu City as a research grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies performed with human participants or with animals by any of the authors.

Supplementary material

253_2018_9553_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1110 kb)


  1. Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43(3):559–565CrossRefGoogle Scholar
  2. Ananou S, Gálvez A, Martínez-Bueno M, Maqueda M, Valdivia E (2005) Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157: H7. J Appl Microbiol 99(6):1364–1372PubMedCrossRefGoogle Scholar
  3. Antunes LCM, Queiroz Ferreira L, Oliveira Ferreira E, Rodrigues Miranda K, Eliane Santos Avelar K, Pilotto MC, Domingues R, Candida de Souza Ferreira M (2005) Bacteroides species produce Vibrio harveyi autoinducer 2-related molecules. Anaerobe 11(5):295–301PubMedCrossRefGoogle Scholar
  4. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRefGoogle Scholar
  5. Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85(1):25–33PubMedCrossRefGoogle Scholar
  6. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43PubMedPubMedCentralCrossRefGoogle Scholar
  7. Borriss R, Danchin A, Harwood CR, Médigue C, Rocha E, Sekowska A, Vallenet D (2017) Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11(1):3–17PubMedCentralCrossRefGoogle Scholar
  8. Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70(1):27–32PubMedCrossRefGoogle Scholar
  9. Chau HTC, Kadokami K, Ifuku T, Yoshida Y (2017) Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry. Environ Sci Pollut R 24(34):26396–26409CrossRefGoogle Scholar
  10. Cheong WS, Lee CH, Moon YH, Oh HS, Kim SR, Lee SH, Lee CH, Lee JK (2013) Isolation and identification of indigenous quorum quenching bacteria, Pseudomonas sp. 1A1, for biofouling control in MBR. Ind Eng Chem Res 52(31):10554–10560CrossRefGoogle Scholar
  11. Dhall P, Kumar R, Kumar A (2012) Biodegradation of sewage wastewater using autochthonous bacteria. Sci World JGoogle Scholar
  12. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci 97(7):3526–3531PubMedCrossRefGoogle Scholar
  13. Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119(3):311–328CrossRefGoogle Scholar
  14. Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill ME, Parsek MR, Nierman WC, Greenberg EP (2009) Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol 191(12):3909–3918PubMedPubMedCentralCrossRefGoogle Scholar
  15. El-Bestawy E, El-Masry MH, Nawal E (2005) The potentiality of free gram-negative bacteria for removing oil and grease from contaminated industrial effluents. World J Microbiol Biotechnol 21(6-7):815–822CrossRefGoogle Scholar
  16. Fukuzaki S, Nishio N, Shobayashi M, Nagai S (1990) Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl Environ Microbiol 56(3):719–723PubMedPubMedCentralGoogle Scholar
  17. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111(1): 28-67.Google Scholar
  18. Gerardi MH (2006) Wastewater bacteria (Vol. 5): John Wiley & SonsGoogle Scholar
  19. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2015) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40(1):86–116PubMedCrossRefGoogle Scholar
  20. Guendouze A, Plener L, Bzdrenga J, Jacquet P, Rémy B, Elias M, Lavigne JP, Daudé D, Chabrière E (2017) Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol 8:227PubMedPubMedCentralCrossRefGoogle Scholar
  21. Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151PubMedCrossRefGoogle Scholar
  22. Ivanov V, Stabnikov V, Zhuang W, Tay J, Tay S (2005) Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. J Appl Microbiol 98(5):1152–1161PubMedCrossRefGoogle Scholar
  23. Jarvik T, Smillie C, Groisman EA, Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar Typhimurium 14028 genome. J Bacteriol 192(2):560–567PubMedCrossRefGoogle Scholar
  24. Jiang W, Xia S, Liang J, Zhang Z, Hermanowicz SW (2013) Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res 47(1):187–196PubMedCrossRefGoogle Scholar
  25. Kato T, Inuzuka L, Kondo M, Matsuda T (2001) Growth of nisin-producing lactococci in cooked rice supplemented with soybean extract and its application to inhibition of Bacillus subtilis in rice miso. Biosci Biotechnol Biochem 65(2):330–337PubMedCrossRefGoogle Scholar
  26. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci 102(2):309–314PubMedCrossRefGoogle Scholar
  27. Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH (2011) Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 45(4):1601–1607PubMedCrossRefGoogle Scholar
  28. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1–e1PubMedCrossRefGoogle Scholar
  29. Kurokawa T, Tanisho S (2005) Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Mar Biotechnol 7(2):112–118PubMedCrossRefGoogle Scholar
  30. Lay JJ, Li YY, Noike T (1998) The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environ Res 70(5):1075–1082CrossRefGoogle Scholar
  31. Lee JH, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23(11):707–718PubMedCrossRefGoogle Scholar
  32. Lowry OHRN, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  33. Luo ZQ, Su S, Farrand SK (2003) In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 185(19):5665–5672PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR, Tomás M, Wood TK (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6(3):493–501. PubMedCrossRefGoogle Scholar
  36. Maeda T, Yoshimura T, García-Contreras R, Ogawa HI (2011) Purification and characterization of a serine protease secreted by Brevibacillus sp. KH3 for reducing waste activated sludge and biofilm formation. Bioresour Technol 102(22):10650–10656PubMedCrossRefGoogle Scholar
  37. Mayer C, Romero M, Muras A, Otero A (2015) Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli. Appl Microbiol Biotechnol 99(22):9523–9539PubMedCrossRefGoogle Scholar
  38. McAnulty MJ, Poosarla VG, Li J, Soo VW, Zhu F, Wood TK (2017) Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol Bioeng 114(4):852–861PubMedCrossRefGoogle Scholar
  39. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol 143(12):3703–3711CrossRefGoogle Scholar
  40. Migiyama Y, Kaneko Y, Yanagihara K, Morohoshi T, Morinaga Y, Nakamura S, Miyazaki T, Hasegawa H, Izumikawa K, Kakeya H, Kohrogi H (2013) Efficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas aeruginosa in a mouse model of acute pneumonia. Antimicrob Agents Chemother: AAC. 00456–00413Google Scholar
  41. Mikkelsen LH, Keiding K (2002) Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res 36(10):2451–2462PubMedCrossRefGoogle Scholar
  42. Mohd Yasin NH, Maeda T, Hu A, Yu C-P, Wood TK (2015) CO2 sequestration by methanogens in activated sludge for methane production. Appl Energy 142:426–434CrossRefGoogle Scholar
  43. Mohd Yusoff MZ, Maeda T, Sanchez-Torres V, Ogawa HI, Shirai Y, Hassan MA, Wood TK (2012) Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production. Int J Hydrogen Energy 37(23):17778–17787CrossRefGoogle Scholar
  44. Morohoshi T, Tokita K, Ito S, Saito Y, Maeda S, Kato N, Ikeda T (2013) Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng 116(2):175–179PubMedCrossRefGoogle Scholar
  45. Mustapha NA, Hu A, Yu C-P, Sharuddin SS, Ramli N, Shirai Y, Maeda T (2018) Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge. Appl Microbiol Biotechnol 102(12):5323–5334PubMedCrossRefGoogle Scholar
  46. Mustapha NA, Sakai K, Shirai Y, Maeda T (2016) Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics. Appl Microbiol Biotechnol 100(21):9355–9364PubMedCrossRefGoogle Scholar
  47. Mustapha NA, Sharuddin SS, Mohd Zainudin MH, Ramli N, Shirai Y, Maeda T (2017) Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. J Clean Prod 165:621–629CrossRefGoogle Scholar
  48. Nguyen MT, Maeda T, Yusoff MZM, Ogawa HI (2014) Effect of azithromycin on enhancement of methane production from waste activated sludge. J Ind Microbiol Biotechnol 41(7):1051–1059PubMedCrossRefGoogle Scholar
  49. Oh HS, Kim SR, Cheong WS, Lee CH, Lee JK (2013) Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant. Appl Microbiol Biotechnol 97(23):10223–10231PubMedCrossRefGoogle Scholar
  50. Peixoto RJM, Miranda KR, Ferreira EO, de Paula GR, Rocha ER, Lobo LA, Domingues RMCP (2014) Production of AI-2 is mediated by the S-ribosylhomocystein lyase gene luxS in Bacteroides fragilis and Bacteroides vulgatus. J Basic Microbiol 54(7):644–649PubMedCrossRefGoogle Scholar
  51. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167(10):581–589PubMedCrossRefGoogle Scholar
  52. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427PubMedPubMedCentralCrossRefGoogle Scholar
  53. Smaoui S, Elleuch L, Bejar W, Karray-Rebai I, Ayadi I, Jaouadi B, Mathieu F, Chouayekh H, Bejar S, Mellouli L (2010) Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635 Appl Biochem Biotechnol 162(4):1132–1146PubMedCrossRefGoogle Scholar
  54. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81(1):233–243PubMedCrossRefGoogle Scholar
  55. Tan CH, Koh KS, Xie C, Zhang J, Tan XH, Lee GP, Zhou Y, Ng WJ, Rice SA, Kjelleberg S (2015) Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1:15006PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ungerfeld EM (2015) Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front Microbiol 6:37. PubMedPubMedCentralCrossRefGoogle Scholar
  57. Venkiteshwaran K, Bocher B, Maki J, Zitomer D (2015) Relating anaerobic digestion microbial community and process function: supplementary issue: water microbiology. Microbiol Insights 8s2:MBI.S33593CrossRefGoogle Scholar
  58. Wang WZ, Morohoshi T, Ikenoya M, Someya N, Ikeda T (2010) AiiM, a novel class of N-Acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76(8):2524–2530PubMedPubMedCentralCrossRefGoogle Scholar
  59. Zielińska M, Rusanowska P, Jarząbek J, Nielsen JL (2016) Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants. Environ Technol 37(18):2358–2367PubMedCrossRefGoogle Scholar
  60. Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations stages and microorganisms. Afr J Biotechnol 11(18):4127–4139Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Functions Engineering, Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyWakamatsuJapan
  2. 2.Department of Chemical EngineeringThe University of Danang, University of Science and TechnologyDanangVietnam
  3. 3.Department of Chemical and Environmental EngineeringThe University of KitakyushuKitakyushuJapan
  4. 4.Department of Microbiology and Parasitology, Faculty of MedicineUNAMMexico CityMexico
  5. 5.Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations