Advertisement

Salinity-driven heterogeneity toward anammox distribution and growth kinetics

  • Zhuoying Wu
  • Han Meng
  • Xiaowu Huang
  • Qian Wang
  • Wen-Hsing Chen
  • Ji-Dong Gu
  • Po-Heng LeeEmail author
Environmental biotechnology
  • 87 Downloads

Abstract

Anaerobic ammonium oxidation (anammox) has been widely applied for biological nitrogen removal in freshwater systems, and there is a potential for its extension in saline water systems. In this study, the abundance and biodiversity of anammox bacteria were investigated in both saline and freshwater full-scale sewage treatment plants (STPs). The anammox bacteria were widely found in four tested STPs with abundance of 105–107 copies per mL of 16S rRNA gene. Phylogenetic results showed that Ca. Scalindua and Ca. Brocadia dominated in saline and freshwater STPs, respectively. Ca. Kuenenia dominated in one of freshwater STPs. However, redundancy discriminate analysis (RDA) indicates the distribution of Ca. Kuenenia in both saline and freshwater conditions. To further elucidate these observations, the Monod model was integrated with Gauss equation for the evaluation of salinity-induced kinetics. Model results reveal that when nitrite concentration (SNO2) is higher than nitrite affinity constant (KNO2), salinity (over ~ 3.0%) is responsible for Candidatus Scalindua dominance over Candidatus Kuenenia. Conversely, in nitrite-depleted conditions (KNO2 ≥ SNO2), high nitrite affinity leads to the predominance of Ca. Scalindua in all salinities. This study provides fundamental insights into saline anammox applications.

Keywords

Anammox Salinity Ca. Scalindua Ca. Kuenenia Kinetic modeling 

Notes

Acknowledgements

This study received funds from the Research Grants Council (RGC) General Research Fund (15273316), Collaborative Research Fund (C7044-14G), Theme-based Fund (T21-711/16-R), and grant (1-ZVJU) from the Hong Kong Polytechnic University.

Compliance with ethical standards

Human and animal rights and informed consent

This paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_9521_MOESM1_ESM.pdf (252 kb)
ESM 1 (PDF 252 kb)

References

  1. Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S (2013) Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol 79(13):4145–4148CrossRefGoogle Scholar
  2. Azari M, Lübken M, Denecke M (2017a) Simulation of simultaneous anammox and denitrification for kinetic and physiological characterization of microbial community in a granular biofilm system. Biochem Eng J 127:206–216CrossRefGoogle Scholar
  3. Azari M, Walter U, Rekers V, Gu JD, Denecke M (2017b) More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm. Chemosphere 174:117–126CrossRefGoogle Scholar
  4. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Icwsm 8:361–362Google Scholar
  5. Dapena-Mora A, Vázquez-Padín J, Campos J, Mosquera-Corral A, Jetten M, Méndez R (2010) Monitoring the stability of an Anammox reactor under high salinity conditions. Biochem Eng J 51(3):167–171CrossRefGoogle Scholar
  6. de Almeida NM, Wessels HJ, de Graaf RM, Ferousi C, Jetten MS, Keltjens JT, Kartal B (2016) Membrane-bound electron transport systems of an anammox bacterium: a complexome analysis. Biochim Biophys Acta (BBA)-Bioenergetics 1857(10):1694–1704CrossRefGoogle Scholar
  7. Hall TA(1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series 41(41), Information Retrieval Ltd.,c1979-c2000, London., p 95–98Google Scholar
  8. Hao X, Heijnen JJ, Van Loosdrecht MC (2002) Model-based evaluation of temperature and inflow variations on a partial nitrification–ANAMMOX biofilm process. Water Res 36(19):4839–4849CrossRefGoogle Scholar
  9. Humbert S, Zopfi J, Tarnawski SE (2012) Abundance of anammox bacteria in different wetland soils. Environ Microbiol Rep 4(5):484–490CrossRefGoogle Scholar
  10. Jetten MS, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr Opin Biotechnol 12(3):283–288CrossRefGoogle Scholar
  11. Ji X, Huang Y-T, Wang Q, Tan GYA, Lin J-G, Lee P-H (2015) State-of-the-Art anaerobic ammonium oxidation (anammox) technology. In: Fang, HHP and Zhang T (eds) Anaerobic biotechnology: environmental protection and resource recovery. World Scientific, pp 49–71Google Scholar
  12. Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Röser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64(8):3042–3051PubMedPubMedCentralGoogle Scholar
  13. Kartal B, Koleva M, Arsov R, van der Star W, Jetten MS, Strous M (2006) Adaptation of a freshwater anammox population to high salinity wastewater. J Biotechnol 126(4):546–553CrossRefGoogle Scholar
  14. Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, Ohashi A (2011) Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ 26(1):67–73CrossRefGoogle Scholar
  15. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MC (2014) Full-scale partial nitritation/anammox experiences–an application survey. Water Res 55:292–303CrossRefGoogle Scholar
  16. Liu C, Yamamoto T, Nishiyama T, Fujii T, Furukawa K (2009) Effect of salt concentration in anammox treatment using non woven biomass carrier. J Biosci Bioeng 107(5):519–523CrossRefGoogle Scholar
  17. Liu M, Peng Y, Wang S, Liu T, Xiao H (2014) Enhancement of anammox activity by addition of compatible solutes at high salinity conditions. Bioresour Technol 167:560–563CrossRefGoogle Scholar
  18. Liu Y, Ni B-J (2015) Appropriate Fe (II) addition significantly enhances anaerobic ammonium oxidation (anammox) activity through improving the bacterial growth rate. Sci Rep 5:8204CrossRefGoogle Scholar
  19. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235CrossRefGoogle Scholar
  20. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371CrossRefGoogle Scholar
  21. Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta (BBA)-Bioenergetics 1777(7–8):985–992CrossRefGoogle Scholar
  22. Nakajima J, Sakka M, Kimura T, Furukawa K, Sakka K (2008) Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl Microbiol Biotechnol 77(5):1159–1166CrossRefGoogle Scholar
  23. Neef A, Amann R, Schlesner H, Schleifer K-H (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiol 144(12):3257–3266CrossRefGoogle Scholar
  24. Nejidat A, Diaz-Reck D, Massalha N, Arbiv A, Dawas A, Dosoretz C, Sabbah I (2018) Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant. Appl Microbiol Biotechnol 102(15):6713–6723CrossRefGoogle Scholar
  25. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiol 157(6):1706–1713CrossRefGoogle Scholar
  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefGoogle Scholar
  28. Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26(4):529–538CrossRefGoogle Scholar
  29. Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol 5:399CrossRefGoogle Scholar
  30. Ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). www. canoco. comGoogle Scholar
  31. Van Der Star WR, Miclea AI, Van Dongen UG, Muyzer G, Picioreanu C, van Loosdrecht M (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101(2):286–294CrossRefGoogle Scholar
  32. Wang S, Peng Y, Ma B, Wang S, Zhu G (2015) Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res 84:66–75CrossRefGoogle Scholar
  33. Windey K, De Bo I, Verstraete W (2005) Oxygen-limited autotrophic nitrification–denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res 39(18):4512–4520CrossRefGoogle Scholar
  34. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78(3):717–725CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonChina
  2. 2.Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of ScienceThe University of Hong KongPok Fu LamChina
  3. 3.Department of Environmental EngineeringNational Ilan UniversityYilanTaiwan

Personalised recommendations