Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 2, pp 903–915 | Cite as

Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing

  • Hong Wang
  • Weihua Chu
  • Chao Ye
  • Bruno Gaeta
  • Huimin Tao
  • Min WangEmail author
  • Zheng QiuEmail author
Applied microbial and cell physiology

Abstract

Quorum sensing (QS) is a cell-to-cell communication that is used by bacteria to regulate collective behaviors. Quorum sensing controls virulence factor production in many bacterial species and it is regarded as an attractive target to combat bacterial pathogenicity, especially against antibiotic-resistant bacteria. Chlorogenic acid (CA), abundant in fruits, vegetables, and Chinese herbs, processes multiple activities. In this research, we explored its quorum sensing quenching activity. In Pseudomonas aeruginosa, CA significantly inhibited the formation of biofilm, the ability of swarming, and virulence factors including protease and elastase activities and rhamnolipid and pyocyanin production. CA showed similar inhibitory effects in Chromobacterium violaceum on its biofilm formation, swarming motility, chitinolytic activity and violacein production. We examined the expression of QS-related genes in P.aeruginosa  and found these genes were all downregulated by CA treatment. Computational modeling revealed that CA can form hydrogen bonds with all three QS receptors. Caenorhabditis elegans and mouse infection models were employed to explore the anti-virulence ability of CA and its effect on pathogenesis process in vivo. CA extended the survival period and reduced the quantity of P. aeruginosa in nematode gut, showing a moderate protective effect on C. elegans. In mice wound model, CA-treated groups showed an accelerating healing rate and the bacteria number in wound area was also decreased by CA treatment. It is suggested by our research that CA has potential to be used as an anti-virulence factor in P. aeruginosa infection.

Keywords

Chlorogenic acid Quorum sensing inhibitor Pseudomonas aeruginosa Anti-virulence 

Notes

Acknowledgments

The present study was supported by the National Natural Science Foundation of China (Grant Nos. 81301902, 81773837), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Double First - Class Uiversity Project (CPU2018GY14, CPU2018GY15).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Ethical statement

All studies were performed in compliance with the National Institutes of Health Guide for the Care and Use of laboratory Animals and approved by IACUC (Institutional Animal Care and Use Committee of China Pharmaceutical University).

References

  1. Alarcon-Herrera N, Flores-Maya S, Bellido B, Garcia-Bores AM, Mendoza E, Avila-Acevedo G, Hernandez-Echeagaray E (2017) Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 109(Pt 2):1018–1025CrossRefGoogle Scholar
  2. Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12(4):300–308CrossRefGoogle Scholar
  3. Annapoorani AV, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26(9):1067–1077CrossRefGoogle Scholar
  4. Benevides Bahiense J, Marques FM, Figueira MM, Vargas TS, Kondratyuk TP, Endringer DC, Scherer R, Fronza M (2017) Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm Biol 55(1):991–997CrossRefGoogle Scholar
  5. Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8(1):68–83CrossRefGoogle Scholar
  6. Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2):S49–S56CrossRefGoogle Scholar
  7. Brango-Vanegas J, Costa GM, Ortmann CF, Schenkel EP, Reginatto FH, Ramos FA, Arevalo-Ferro C, Castellanos L (2014) Glycosylflavonoids from Cecropia pachystachya Trecul are quorum sensing inhibitors. Phytomedicine 21(5):670–675CrossRefGoogle Scholar
  8. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98(25):14613–14618CrossRefGoogle Scholar
  9. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6(1):17–27CrossRefGoogle Scholar
  10. Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A (2013) Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 40:77–81CrossRefGoogle Scholar
  11. Crousilles A, Maunders E, Bartlett S, Fan C, Ukor EF, Abdelhamid Y, Baker Y, Floto A, Spring DR, Welch M (2015) Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol 10(11):1825–1836CrossRefGoogle Scholar
  12. Defoirdt T (2018) Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 26(4):313–328CrossRefGoogle Scholar
  13. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101(5):1339–1344CrossRefGoogle Scholar
  14. Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G (2016) Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: a review. Biotechnol Adv 34(5):1030–1045CrossRefGoogle Scholar
  15. El-Mowafy SA, Abd El Galil KH, El-Messery SM, Shaaban MI (2014a) Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb Pathog 74:25–32CrossRefGoogle Scholar
  16. El-Mowafy SA, Shaaban MI, Abd El Galil KH (2014b) Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol 117(5):1388–1399CrossRefGoogle Scholar
  17. Gawlik-Dziki U, Dziki D, Swieca M, Nowak R (2017) Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem 225:138–145CrossRefGoogle Scholar
  18. Goswami S, Sarkar R, Saha P, Maity A, Sarkar T, Das D, Chakraborty PD, Bandyopadhyay S, Ghosh CK, Karmakar S, Sen T (2017) Effect of human placental extract in the management of biofilm mediated drug resistance—a focus on wound management. Microb Pathog 111:307–315CrossRefGoogle Scholar
  19. Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40(1):86–116CrossRefGoogle Scholar
  20. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723CrossRefGoogle Scholar
  21. Hancock RE (2014) Collateral damage. Nat Biotechnol 32(1):66–68CrossRefGoogle Scholar
  22. Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM (2017) Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J Food Sci 82(5):1239–1246CrossRefGoogle Scholar
  23. Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6:e1000982CrossRefGoogle Scholar
  24. Jorgensen JH (1993) Antimicrobial susceptibility testing of bacteria that grow aerobically. Infect Dis Clin N Am 7(2):393–409Google Scholar
  25. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245CrossRefGoogle Scholar
  26. Kim S, Thiessen PA, Bolton EE, Chen J, Fu V, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213CrossRefGoogle Scholar
  27. Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10(8):744–752CrossRefGoogle Scholar
  28. Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M (2015) Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to beta-lactam antibiotics. Antimicrob Agents Chemother 59(3):1512–1518CrossRefGoogle Scholar
  29. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111CrossRefGoogle Scholar
  30. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41CrossRefGoogle Scholar
  31. Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu V (2013) Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol Lett 341(1):37–44CrossRefGoogle Scholar
  32. Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):M398–M403CrossRefGoogle Scholar
  33. Marin L, Miguelez EM, Villar CJ, Lombo F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215CrossRefGoogle Scholar
  34. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711CrossRefGoogle Scholar
  35. Moy TI, Ball AR, Anklesaria Z, Casadei G, Lewis K, Ausubel FM (2006) Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A 103(27):10414–10419CrossRefGoogle Scholar
  36. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33CrossRefGoogle Scholar
  37. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14(9):576–588CrossRefGoogle Scholar
  38. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318CrossRefGoogle Scholar
  39. Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, Dayakar BV, Schweizer HP, Vivanco JM (2005) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect Immun 73(9):5319–5328CrossRefGoogle Scholar
  40. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97(9):4885–4890CrossRefGoogle Scholar
  41. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67(11):5854–5862Google Scholar
  42. Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. Downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8(1):e53441CrossRefGoogle Scholar
  43. Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, Di Stefano A, Giacometti A, Offidani A (2016) Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of Staphylococcal infected wound. PLoS One 11(6):e0151956CrossRefGoogle Scholar
  44. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764CrossRefGoogle Scholar
  45. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96(2):715–720CrossRefGoogle Scholar
  46. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  47. Wang L, Bi C, Cai H, Liu B, Zhong X, Deng X, Wang T, Xiang H, Niu X, Wang D (2015) The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol 6:1031Google Scholar
  48. Welsh MA, Eibergen NR, Moore JD, Blackwell HE (2015) Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 137(4):1510–1519CrossRefGoogle Scholar
  49. Wikler MA (1990) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Clinical & Laboratory Standards InstituteGoogle Scholar
  50. Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7CrossRefGoogle Scholar
  51. Yang YX, Xu ZH, Zhang YQ, Tian J, Weng LX, Wang LH (2012) A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol 50(6):987–993CrossRefGoogle Scholar
  52. Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52(3):269–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.School of computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations