Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 437–447 | Cite as

Prospects for the use of spherical gold nanoparticles in immunization

  • Sergey A. Staroverov
  • Alexei A. Volkov
  • Pavel V. Mezhenny
  • Ivan Yu. Domnitsky
  • Alexander S. Fomin
  • Sergey V. Kozlov
  • Lev A. Dykman
  • Olga I. GuliyEmail author
Original Article


Recent years have seen extremely fast development of new viral nanovaccines and diagnostic agents using nanostructures prepared by biological and chemical synthesis. We used spherical gold nanoparticles (average diameter, 15 nm) as a platform for the antigen for swine transmissible gastroenteritis virus (TGEV). The literature data demonstrate that immunization of animals with the TGEV antigen coupled to gold nanoparticles (GNPs) not only activates antigen-presenting cells but also increases the proliferative activity of splenic lymphoid (antibody-forming) cells. The contents of γ-IFN, IL-1β, and IL-6 in animals immunized with GNP-antigen conjugates were found to be higher than those in intact animals or in animals given the antigen alone. The increased concentration of IL-1β in the immunized animals directly correlated with the activity of macrophages and stimulated B cells, which produce this cytokine when activated. The increased concentration of IL-6 indicates that the injected preparations are stimulatory to cellular immunity. Immunization with the TGEV antigen conjugated to GNPs as a carrier activates the respiratory activity of lymphoid cells and peritoneal macrophages, which is directly related to their transforming activity and to the activation of antibody generation. Furthermore, the use of this conjugate allows marked improvement of the structure of the animals’ immune organs and restores the morphological–functional state of these organs. The microanatomical changes (increased number of follicles) indicate the activation of the B-dependent zone of the spleen and, consequently, the development of a humoral-type immunological reaction. The degradative processes observed in the animals immunized with TGEV antigen alone are evidence of weak resistance to pathogen attack. These results can be used to develop vaccines against this infection by employing TGEV antigen coupled to gold nanoparticles as a carrier.


Swine transmissible gastroenteritis Virus antigen Immunization Guinea pig Gold nanoparticle Nanovaccine Immune system organs 


Funding information

This study was funded by the Russian Science Foundation (project no. 18-14-00016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Assis NRG, Caires AJ, Figueiredo BC, Morais SB, Mambelli FS, Marinho FV, Ladeira LO, Oliveira SC (2018) The use of gold nanorods as a new vaccine platform against schistosomiasis. J Control Release 275:40–52CrossRefGoogle Scholar
  2. Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V (2013) Quillajasaponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm 441(1):636–642CrossRefGoogle Scholar
  3. Bernas T., Dobrucki J.W. (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC, Arch Biochem Biophys 380: 108–116Google Scholar
  4. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Del Rev 60:1289–1306CrossRefGoogle Scholar
  5. Chen YS, Hung YC, Lin WH, Huang GS (2010) Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21(19):195101CrossRefGoogle Scholar
  6. Cheng QH, Niu XY (1992) Investigation on the porcine epidemic diarrhea prevalent on Qinhai. Vet Sci 22:22–23Google Scholar
  7. Delmas B, Gelfi J, Laude H (1986) Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J Gen Virol 67:1405–1418CrossRefGoogle Scholar
  8. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  9. Dykman LA, Khlebtsov NG (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282CrossRefGoogle Scholar
  10. Dykman LA, Staroverov SA, Bogatyrev VA, Shchyogolev SY (2010a) Adjuvant properties of gold nanoparticles. Nanotechnol 5(11–12):748–761 (in Russian)Google Scholar
  11. Dykman LA, Staroverov SA, Bogatyrev VA, Shchyogolev SYu (2010b) Gold nanoparticles as an antigen carrier and an adjuvant. Nova science publishers, New York p 54Google Scholar
  12. Dykman LA, Bogatyrev VA, Shchyogolev SYu, Khlebtsov NG (2008) Gold nanoparticles: synthesis, properties, biomedical applications. Nauka, Moscow (in Russian)Google Scholar
  13. Fedorova AA, Azzami K, Ryabchikova EI, Spitsyna YE, Silnikov VN, Ritter W, Gross HJ, Tautz J, Vlassov VV, Beier H, Zenkova MA (2011) Inactivation of a non-enveloped RNA virus by artificial ribonucleases: honey bees. Antivir Res 91:267–277CrossRefGoogle Scholar
  14. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22CrossRefGoogle Scholar
  15. Gregory AE, Williamson ED, Prior JL (2012) Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 30(48):6777–6782CrossRefGoogle Scholar
  16. Herrington CS, McGee J O’D (eds) (1993) Diagnostic Molecular Pathology: A Practical Approach. Oxford University Press, OxfordGoogle Scholar
  17. Horzinek MC, Lutz H, Pedersen NC (1982) Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infect Immun 37(3):1148–1155PubMedPubMedCentralGoogle Scholar
  18. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35Google Scholar
  19. Leiter EH (2001) In: Coligan JE, Kruisbeek AM, Marguilies DH, Shevach EM, Strober W (eds) The NOD mouse: a model for insulin dependent diabetes mellitus //Current protocols in immunology. vol 3. John Wiley & Sons, New York, pp 15.9.1–15.9.23Google Scholar
  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  21. Martins AMCRPF, Bersano JG, Ogata R, Amante G, Nastari BDB, Catroxo MHB (2013) Diagnosis to detect porcine transmissible gastroenteritis virus (TGEV) by optical and transmission electron microscopy techniques. Int J Morphol 31:706–715CrossRefGoogle Scholar
  22. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544CrossRefGoogle Scholar
  23. Moxley RA, Olson LD (1989) Clinical evaluation of transmissible gastroenteritis virus vaccines and vaccination procedures for inducing lactogenic immunity in sows. Am J Vet Res 50:111–118PubMedGoogle Scholar
  24. Patent RU2009124039A (2009)Google Scholar
  25. Pissuwan D, Valenzuela SM, Cortie MB (2008) Prospects for gold nanorodparticles in diagnostic and therapeutic applications. Biotechnol Genet Eng Rev 25(1):93–112CrossRefGoogle Scholar
  26. Staroverov SА, Fomin АS, Volkov АА, Koslov SV, Khlebtsov BN, Larionov SV, Vasilenko OA, Megennei PV, Vinnikov NT, Dykman LА (2012) Usage of phage mini-antibodies as means of detecting ferritin concentration in animal blood. Russian Veterinary Journal Productive animals 4:30–33 (in Russian)Google Scholar
  27. Straw BE, D’Allaire S, Mengeling WL, Taylor DJ (eds) (2000) Disease of swine. Iowa State University Press, AmesGoogle Scholar
  28. Sturman LS, Riehard CS, Holmes KV (1985) Proteolytic cleavage of the E2 glyco protein of murine coronavirus by trypsin and separation of two different 90K cleavage fragments. J. Gen. Virol. 56:904–911Google Scholar
  29. Tao W, Ziemer KS, Gill HS (2014) Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 9(2):237–251CrossRefGoogle Scholar
  30. Tao W, Hurst BL, Shakya AK, Uddin MJ, Ingrole RS, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S, Tarbet EB, Gill HS (2017) Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antivir Res 141:62–72.
  31. Versiani AF, Andrade LM, Martins EMN (2016) Gold nanoparticles and their applications in biomedicine. FutureVirol 11(4):293–309Google Scholar
  32. Wesley RD, Woods RD, Cheung AK (1991) Genetic analysis of porcine respiratory Coronavirus, an attenuated variant of transmissible gastroenteritis virus, J. Virol 65:3369–3373Google Scholar
  33. Xu L, Liu Y, Chen Z, Li W, Wang L, Wu X, Ji Y, Zhao Y, Ma L, Shao Y, Chen C (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012CrossRefGoogle Scholar
  34. Zhang Q, Xu Y, Chang R, Tong D, Xu X (2018) Transmissible gastroenteritis virus N protein causes endoplasmic reticulum stress, up-regulates interleukin-8 expression and its subcellular localization in the porcine intestinal epithelial cell. Res Vet Sci 119:109–115. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sergey A. Staroverov
    • 1
  • Alexei A. Volkov
    • 2
  • Pavel V. Mezhenny
    • 2
  • Ivan Yu. Domnitsky
    • 2
  • Alexander S. Fomin
    • 1
  • Sergey V. Kozlov
    • 2
  • Lev A. Dykman
    • 1
  • Olga I. Guliy
    • 1
    • 2
    Email author
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussian Federation
  2. 2.Saratov State Vavilov Agrarian UniversitySaratovRussian Federation

Personalised recommendations