Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 97–112 | Cite as

Cationic surfactants as antifungal agents

  • M. Elisa FaitEmail author
  • Laura Bakas
  • Graciela L. Garrote
  • Susana R. MorcelleEmail author
  • Mario C. N. SaparratEmail author
Mini-Review

Abstract

Fungi—in being responsible for causing diseases in animals and humans as well as environmental contaminations in health and storage facilities—represent a serious concern to health security. Surfactants are a group of chemical compounds used in a broad spectrum of applications. The recently considered potential employment of cationic surfactants as antifungal or fungistatic agents has become a prominent issue in the development of antifungal strategies, especially if such surface-active agents can be synthesized in an eco-friendly manner. In this review, we describe the antifungal effect and the reported mechanisms of action of several types of cationic surfactants and also include a discussion of the contribution of these surfactants to the inhibition of yeast-based-biofilm formation. Furthermore, the putative mechanism of arginine-based tensioactive compounds as antifungal agents and their applications are also analyzed.

Keywords

Cationic surfactants Antifungal activity Human pathogens Antifungal mechanism 

Notes

Acknowledgments

MEF was awarded a CONICET fellowship. SRM, MCNS, and GLG are members of CONICET. LB is member of the CICPBA as a career investigator. Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript.

Funding information

This study was funded by MINCyT (PICT 2013-2531 and PICT 2015-1620), CAPES-MINCyT (017/2014), and UNLP (X11-682).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acmite Mark (2016) Global surfactant market. Market report. In: Acmite Mark. Intell. http://www.acmite.com/brochure/Brochure-Global-Surfactant-Market-Report.pdf. Accessed 6 Sept 2018
  2. Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY, Shaban SM (2014a) Inhibition of mild steel corrosion in acidic medium by some cationic surfactants. J Ind Eng Chem 20:3524–3535.  https://doi.org/10.1016/j.jiec.2013.12.045 CrossRefGoogle Scholar
  3. Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY, Shaban SM (2014b) Characterization, surface properties and biological activity of new prepared cationic surfactants. J Ind Eng Chem 20:1633–1640.  https://doi.org/10.1016/j.jiec.2013.08.010 CrossRefGoogle Scholar
  4. Anderson SE, Shane H, Long C, Lukomska E, Meade BJ, Marshall NB (2016) Evaluation of the irritancy and hypersensitivity potential following topical application of didecyldimethylammonium chloride. J Immunotoxicol 13:557–566.  https://doi.org/10.3109/1547691X.2016.1140854 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atanasov KE, Barboza-Barquero L, Tiburcio AF, Alcázar R (2016) Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana. Front Plant Sci 7:1–11.  https://doi.org/10.3389/fpls.2016.00401 CrossRefGoogle Scholar
  6. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575.  https://doi.org/10.3390/ph6121543 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health B 42:441–451.  https://doi.org/10.1080/03601230701316465 CrossRefPubMedGoogle Scholar
  8. Baldridge JW, Michalow A (2004) Biofilm reduction in crossflow filtration systems. US Grant US6699391B2. 1–7Google Scholar
  9. Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702.  https://doi.org/10.1016/j.febslet.2013.04.031 CrossRefPubMedGoogle Scholar
  10. Benyagoub M, Bélanger RR (1995) Development of a mutant strain of Sporothrix flocculosa with resistance to dodemorph-acetate. Phytopathology 85:766–770.  https://doi.org/10.1094/Phyto-85-766 CrossRefGoogle Scholar
  11. Bordes R, Holmberg K (2015) Amino acid-based surfactants—do they deserve more attention? Adv Colloid Interf Sci 222:79–91.  https://doi.org/10.1016/j.cis.2014.10.013 CrossRefGoogle Scholar
  12. Brycki B, Dega-Szafran Z, Mirska I (2010) Synthesis and antimicrobial activities of some quaternary morpholinium chlorides. Polish J Microbiol 59:49–53Google Scholar
  13. Bseiso E, Nasr M, Abd El Gawad N, Sammour O (2015) Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol 81:457.  https://doi.org/10.4103/0378-6323.162328 CrossRefPubMedGoogle Scholar
  14. Castillo JA (2006) Comparative study of the antimicrobial activity of bis(N-caproyl-L-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother 57:691–698.  https://doi.org/10.1093/jac/dkl012 CrossRefPubMedGoogle Scholar
  15. Castillo JA, Infante MR, Manresa A, Vinardell MP, Mitjans M, Clapés P (2006) Chemoenzymatic synthesis and antimicrobial and haemolytic activities of amphiphilic bis(phenylacetylarginine) derivatives. ChemMedChem 1:1091–1098.  https://doi.org/10.1002/cmdc.200600148 CrossRefPubMedGoogle Scholar
  16. Chandra N, Tyagi VK (2013) Synthesis, properties, and applications of amino acids based surfactants: a review. J Dispers Sci Technol 34:800–808.  https://doi.org/10.1080/01932691.2012.695967 CrossRefGoogle Scholar
  17. Chen Y, Geurts M, Sjollema SB, Kramer NI, Hermens JLM, Droge STJ (2014) Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations. Environ Toxicol Chem 33:606–615.  https://doi.org/10.1002/etc.2465 CrossRefPubMedGoogle Scholar
  18. Codling CE, Maillard JY, Russell AD (2003) Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J Antimicrob Chemother 51:1153–1158.  https://doi.org/10.1093/jac/dkg228 CrossRefPubMedGoogle Scholar
  19. Colomer A, Pinazo A, Manresa MA, Vinardell MP, Mitjans M, Infante MR, Pérez L (2011) Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities. J Med Chem 54:989–1002.  https://doi.org/10.1021/jm101315k CrossRefPubMedGoogle Scholar
  20. Dancer SJ (2009) The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect 73:378–385.  https://doi.org/10.1016/j.jhin.2009.03.030 CrossRefPubMedGoogle Scholar
  21. Deepak SA, Basavaraju P, Chaluvaraju G, Shetty NP, Oros G, Shekar H (2006) Developmental stage response of pearl millet downy mildew (Sclerospora graminicola) to fungicides. Appl Ecol Environ Res 4:125–149.  https://doi.org/10.15666/aeer/0402_125149 CrossRefGoogle Scholar
  22. Desai JV, Mitchell AP, Andes DR (2014) Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4:a019729.  https://doi.org/10.1101/cshperspect.a019729 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Di Nica V, Gallet J, Villa S, Mezzanotte V (2017) Toxicity of quaternary ammonium compounds (QACs) as single compounds and mixtures to aquatic non-target microorganisms: experimental data and predictive models. Ecotoxicol Environ Saf 142:567–577.  https://doi.org/10.1016/j.ecoenv.2017.04.028 CrossRefPubMedGoogle Scholar
  24. Dreassi E, Zizzari AT, D’Arezzo S, Visca P, Botta M (2007) Analysis of guazatine mixture by LC and LC–MS and antimycotic activity determination of principal components. J Pharm Biomed Anal 43:1499–1506.  https://doi.org/10.1016/j.jpba.2006.10.029 CrossRefPubMedGoogle Scholar
  25. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution (N Y):1–8.  https://doi.org/10.5061/dryad.pd28pm7n
  26. Dusane DH, Dam S, Nancharaiah YV, Kumar A, Venugopalan VP, Zinjarde SS (2012) Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst 8:17.  https://doi.org/10.1186/2046-9063-8-17 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fait ME, Garrote GL, Clapés P, Tanco S, Lorenzo J, Morcelle SR (2015) Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids 47:1465–1477.  https://doi.org/10.1007/s00726-015-1979-0 CrossRefPubMedGoogle Scholar
  28. Fait ME, da Costa H PS, Freitas C DT, Bakás L, Morcelle SR (2018) Antifungal activity of arginine-based surfactants. Curr Bioact Compd 14:1–9.  https://doi.org/10.2174/1573407214666180131161302 CrossRefGoogle Scholar
  29. Florence AT, Atwood D (2006) Surfactants. In: Physicochemical principles of pharmacy, 4th edn. Pharmaceutical Press, LondonGoogle Scholar
  30. Gaikwad KK, Lee SM, Lee JS, Lee YS (2017) Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. J Food Meas Charact 11:1706–1716.  https://doi.org/10.1007/s11694-017-9551-0 CrossRefGoogle Scholar
  31. Gecol H, Ergican E, Fuchs A (2004) Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane. J Memb Sci 241:105–119.  https://doi.org/10.1016/j.memsci.2004.04.026 CrossRefGoogle Scholar
  32. Gerez CL, Carbajo MS, Rollán G, Torres Leal G, Font de Valdez G (2010) Inhibition of citrus fungal pathogens by using lactic acid bacteria. J Food Sci 75:M354–M359.  https://doi.org/10.1111/j.1750-3841.2010.01671.x CrossRefPubMedGoogle Scholar
  33. Gerova M, Rodrigues F, Lamère J-F, Dobrev A, Fery-Forgues S (2008) Self-assembly properties of some chiral N-palmitoyl amino acid surfactants in aqueous solution. J Colloid Interface Sci 319:526–533.  https://doi.org/10.1016/j.jcis.2007.12.004 CrossRefPubMedGoogle Scholar
  34. Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715.  https://doi.org/10.1111/j.1365-2672.2005.02664.x CrossRefPubMedGoogle Scholar
  35. Gong T, Zhang X, Li Y, Xian Q (2016) Formation and toxicity of halogenated disinfection byproducts resulting from linear alkylbenzene sulfonates. Chemosphere 149:70–75.  https://doi.org/10.1016/j.chemosphere.2016.01.067 CrossRefPubMedGoogle Scholar
  36. González-Jaramillo LM, Aranda FJ, Teruel JA, Villegas-Escobar V, Ortiz A (2017) Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 156:114–122.  https://doi.org/10.1016/j.colsurfb.2017.05.021 CrossRefPubMedGoogle Scholar
  37. Grand View Research (2016) Surfactants market revenue is expected to grow at CAGR of 5.4% owing to enhanced demand in personal care industry till 2022: Grand View Research, Inc. In: Gd. View Res. http://globenewswire.com/news-release/2016/02/11/809799/0/en/Surfactants-Market-Revenue-Is-Expected-To-Grow-At-CAGR-Of-5-4-Owing-To-Enhanced-Demand-In-Personal-Care-Industry-Till-2022-Grand-View-Research-Inc.html. Accessed 2 Sept 2018
  38. Gupta AK, Ahmad I, Summerbell RC (2002) Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med Mycol 40:201–208.  https://doi.org/10.1080/mmy.40.2.201.208 CrossRefPubMedGoogle Scholar
  39. Hanson JR (2008) Chemistry of fungi, RSC Publis. Royal Society of Chemistry, CambridgeGoogle Scholar
  40. Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921PubMedPubMedCentralGoogle Scholar
  41. Hay R (2017) Superficial fungal infections. Med (United Kingdom) 45:707–710.  https://doi.org/10.1016/j.mpmed.2017.08.006 CrossRefGoogle Scholar
  42. Hayes DG (2009) Surfactants overview and industrial state-of-the-art. In: Hayes DG, Kitamoto D, Solaiman D, Ashby RD (eds) Biobased surfactants and detergents: synthesis, properties, and applications. AOCS Press, Illinois, pp 3–28Google Scholar
  43. He K, Xu L (2017) Unique mixtures of anionic/cationic surfactants: a new approach to enhance surfactant performance in liquids-rich shale reservoirs. SPE Prod Oper 33:1–8.  https://doi.org/10.2118/184515-PA CrossRefGoogle Scholar
  44. Hegazy MA, El-Etre AY, El-Shafaie M, Berry KM (2016) Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J Mol Liq 214:347–356.  https://doi.org/10.1016/j.molliq.2015.11.047 CrossRefGoogle Scholar
  45. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104.  https://doi.org/10.1089/mdr.2009.0120 CrossRefPubMedGoogle Scholar
  46. Hollis CG, Terry JP, Jaquess PA (1995) Methods for removing biofilm from or preventing buildup thereof on surfaces in industrial water systems. 1–10Google Scholar
  47. Holtappels M, Swinnen E, De Groef L, Wuyts J, Moons L, Lagrou K, Van Dijck P, Kucharíková S (2017) Antifungal activity of oleylphosphocholine on in vitro and in vitro Candida albicans biofilms. Antimicrob Agents Chemother 62:e01767–e01717.  https://doi.org/10.1128/AAC.01767-17 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Infante MR, Pérez L, Morán C, Pons R, Pinazo A (2009) Synthesis, aggregation properties, and applications of biosurfactants derived from arginine. In: Hayes DG, Kitamoto D, Solaiman D, Ashby R (eds) Biobased surfactants and detergents: synthesis, properties, and applications. AOCS Press, Illinois, pp 351–387Google Scholar
  49. Isaac J, Scheinman PL (2017) Benzalkonium chloride. Dermatitis 28:346–352.  https://doi.org/10.1097/DER.0000000000000316 CrossRefPubMedGoogle Scholar
  50. Jabra-Rizk MA, Falkler WA, Meiller TF (2004) Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19.  https://doi.org/10.3201/eid1001.030119 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jennings MC, Minbiole KPC, Wuest WM (2015) Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect Dis 1:288–303.  https://doi.org/10.1021/acsinfecdis.5b00047 CrossRefPubMedGoogle Scholar
  52. Jessop PG, Ahmadpour F, Buczynski MA, Burns TJ, Green II NB, Korwin R, Long D, Massad SK, Manley JB, Omidbakhsh N, Pearl R, Pereira S, Predale RA, Sliva PG, VanderBilt H, Weller S, Wolf MH (2015) Opportunities for greener alternatives in chemical formulations. Green Chem 17:2664–2678.  https://doi.org/10.1039/C4GC02261K CrossRefGoogle Scholar
  53. Jiang Q, Yue D, Nie Y, Xu X, He Y, Zhang S, Wagner E, Gu Z (2016) Specially-made lipid-based assemblies for improving transmembrane gene delivery: comparison of basic amino acid residue rich periphery. Mol Pharm 13:1809–1821.  https://doi.org/10.1021/acs.molpharmaceut.5b00967 CrossRefPubMedGoogle Scholar
  54. Johansson J, Somasundarau P (eds) (2007) Handbook for cleaning/decontamination of surfaces. Elsevier, AmsterdamGoogle Scholar
  55. Kanazawa A, Ikeda T, Endo T (1995) A novel approach to mode of action of cationic biocides: morphological effect on antibacterial activity. J Appl Bacteriol 78:55–60.  https://doi.org/10.1111/j.1365-2672.1995.tb01673.x CrossRefPubMedGoogle Scholar
  56. Labib ME, Lai C-Y (2000) Cleaning method for removing biofilm and debris from lines and tubing. 1–10Google Scholar
  57. Lavorgna M, Russo C, D’Abrosca B, Parrella A, Isidori M (2016) Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ Pollut 210:34–39.  https://doi.org/10.1016/j.envpol.2015.11.042 CrossRefPubMedGoogle Scholar
  58. Li Z, Alessi D, Zhang P, Bowman RS (2002) Organo-illite as a low permeability sorbent to retard migration of anionic contaminants. J Environ Eng 128:583–587.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:7(583) CrossRefGoogle Scholar
  59. Li Z, Willms CA, Kniola K (2003) Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clay Clay Miner 51:445–451.  https://doi.org/10.1346/CCMN.2003.0510411 CrossRefGoogle Scholar
  60. Li Y, Zhang W, Kong B, Puerto M, Bao X, Sha O, Shen Z, Yang Y, Liu Y, Gu S, Miller C, Hirasaki GJ (2014) Mixtures of anionic-cationic surfactants: a new approach for enhanced oil recovery in low-salinity, high-temperature sandstone reservoir. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, pp 1164–1177Google Scholar
  61. Löffler J, Einsele H, Hebart H, Schumacher U, Hrastnik C, Daum G (2000) Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol Lett 185:59–63.  https://doi.org/10.1111/j.1574-6968.2000.tb09040.x CrossRefPubMedGoogle Scholar
  62. Lozano N, Pérez L, Pons R, Pinazo A (2011) Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids 40:721–729.  https://doi.org/10.1007/s00726-010-0710-4 CrossRefPubMedGoogle Scholar
  63. Luz C, Netto MCB, Rocha LFN (2007) In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164:39–47.  https://doi.org/10.1007/s11046-007-9020-0 CrossRefPubMedGoogle Scholar
  64. Mahmoud YA (2016) Fungal keratitis efficient treatments using surface active agents (cetrimide): an overview. J Bacteriol Mycol Open Access 2:3–7.  https://doi.org/10.15406/jbmoa.2016.02.00026 CrossRefGoogle Scholar
  65. Maiale SJ, Marina M, Sánchez DH, Pieckenstain FL, Ruiz OA (2008) In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues. Phytochemistry 69:2552–2558.  https://doi.org/10.1016/j.phytochem.2008.07.003 CrossRefPubMedGoogle Scholar
  66. Maier C, Zeeb B, Weiss J (2014) Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values. Colloids Surfaces B Biointerfaces 117:368–375.  https://doi.org/10.1016/j.colsurfb.2014.03.012 CrossRefPubMedGoogle Scholar
  67. Maldonado MC, Santa Runco R, Navarro AR (2005) Isolation, identification and antifungal susceptibility of lemon pathogenic and non pathogenic fungi. Rev Iberoam Micol 22:57–59.  https://doi.org/10.1016/S1130-1406(05)70009-7 CrossRefPubMedGoogle Scholar
  68. Mallo AC, Nitiu DS, Elíades LA, Saparrat MCN (2017) Fungal degradation of cellulosic materials used as support for cultural heritage. Int J Conserv Sci 8:619–632Google Scholar
  69. Manrique Y, Gibis M, Schmidt H, Weiss J (2017) Influence of application sequence and timing of eugenol and lauric arginate (LAE) on survival of spoilage organisms. Food Microbiol 64:210–218.  https://doi.org/10.1016/j.fm.2017.01.002 CrossRefPubMedGoogle Scholar
  70. Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435.  https://doi.org/10.1016/j.jhazmat.2014.12.009 CrossRefPubMedGoogle Scholar
  71. Messier C, Epifano F, Genovese S, Grenier D (2011) Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18:380–383.  https://doi.org/10.1016/j.phymed.2011.01.013 CrossRefPubMedGoogle Scholar
  72. Morán C, Clapés P, Comelles F, García T, Pérez L, Vinardell P, Mitjans M, Infante MR (2001) Chemical structure/property relationship in single-chain arginine surfactants. Langmuir 17:5071–5075.  https://doi.org/10.1021/la010375d CrossRefGoogle Scholar
  73. MycoBank (2018) Fungal databases, nomenclature & species banks. International Mycological Association. http://www.mycobank.org/. Accessed 15 Sept 2018
  74. Negm NA, Mohamed AS (2008) Synthesis, characterization and biological activity of sugar-based gemini cationic amphiphiles. J Surfactant Deterg 11:215–221.  https://doi.org/10.1007/s11743-008-1071-9 CrossRefGoogle Scholar
  75. Nogueira DR, Scheeren LE, Macedo LB, Marcolino AIP, Pilar Vinardell M, Mitjans M, Rosa Infante M, Farooqi AA, Rolim CMB (2015) Inclusion of a pH-responsive amino acid-based amphiphile in methotrexate-loaded chitosan nanoparticles as a delivery strategy in cancer therapy. Amino Acids 48:157–168.  https://doi.org/10.1007/s00726-015-2075-1 CrossRefPubMedGoogle Scholar
  76. Obłąk E, Piecuch A, Krasowska A, Łuczyński J (2013) Antifungal activity of gemini quaternary ammonium salts. Microbiol Res 168:630–638.  https://doi.org/10.1016/j.micres.2013.06.001 CrossRefPubMedGoogle Scholar
  77. Obłąk E, Piecuch A, Dworniczek E, Olejniczak T (2015) The influence of biodegradable gemini surfactants, N,N’-bis(1-decyloxy-1-oxopronan-2-yl)-N,N,N’,N’ tetramethylpropane-1,3-diammonium dibromide and N,N’-bis(1-dodecyloxy-1-oxopronan-2-yl) N,N,N’,N’-tetramethylethane-1,2-diammonium dibromide. Fungal Biof J Oleo Sci 64:527–537.  https://doi.org/10.5650/jos.ess14195 CrossRefGoogle Scholar
  78. Occams Business Research & Consulting (2017) Global surfactants market insights, opportunity analysis, market shares and forecast 2017-2023. In: Data, Mark Anal http://www.occamsresearch.com/surfactants-market. Accessed 2 Oct 2017
  79. Palermo EF, Kuroda K (2010) Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 87:1605–1615.  https://doi.org/10.1007/s00253-010-2687-z CrossRefPubMedGoogle Scholar
  80. Pang X, Chu C-C (2010) Synthesis, characterization and biodegradation of functionalized amino acid-based poly(ester amide)s. Biomaterials 31:3745–3754.  https://doi.org/10.1016/j.biomaterials.2010.01.027 CrossRefPubMedGoogle Scholar
  81. Peña LC, Argarañá MF, De Zan MM, Giorello A, Antuña S, Prieto CC, Veaute CMI, Müller DM (2017) New amphiphilic amino acid derivatives for efficient DNA transfection in vitro. Adv Chem Eng Sci 07:191–205.  https://doi.org/10.4236/aces.2017.72014 CrossRefGoogle Scholar
  82. Pérez L, Torres JL, Manresa A, Solans C, Infante MR (1996) Synthesis, aggregation, and biological properties of a new class of gemini cationic amphiphilic compounds from arginine, bis(Args) †. Langmuir 12:5296–5301.  https://doi.org/10.1021/la960301f CrossRefGoogle Scholar
  83. Pérez L, Pinazo A, Teresa García M, Lozano M, Manresa A, Angelet M, Pilar Vinardell M, Mitjans M, Pons R, Rosa Infante M (2009) Cationic surfactants from lysine: synthesis, micellization and biological evaluation. Eur J Med Chem 44:1884–1892.  https://doi.org/10.1016/j.ejmech.2008.11.003 CrossRefPubMedGoogle Scholar
  84. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16:603–616.  https://doi.org/10.1038/nrd.2017.46 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pinazo A, Pons R, Pérez L, Infante MR (2011) Amino acids as raw material for biocompatible surfactants. Ind Eng Chem Res 50:4805–4817.  https://doi.org/10.1021/ie1014348 CrossRefGoogle Scholar
  86. Pinazo A, Manresa MA, Marques AM, Bustelo M, Espuny MJ, Pérez L (2016) Amino acid–based surfactants: new antimicrobial agents. Adv Colloid Interf Sci 228:17–39.  https://doi.org/10.1016/j.cis.2015.11.007 CrossRefGoogle Scholar
  87. Posadas JB, Comerio RM, Mini JI, Nussenbaum AL, Lecuona RE (2012) A novel dodine-free selective medium based on the use of cetyl trimethyl ammonium bromide (CTAB) to isolate Beauveria bassiana, Metarhizium anisopliae sensu lato and Paecilomyces lilacinus from soil. Mycologia 104:974–980.  https://doi.org/10.3852/11-234 CrossRefPubMedGoogle Scholar
  88. Raicu V (1998) Effects of cetyltrimethylammonium bromide (CTAB) surfactant upon the dielectric properties of yeast cells. Biochim Biophys Acta - Gen Subj 1379:7–15.  https://doi.org/10.1016/S0304-4165(97)00056-1 CrossRefGoogle Scholar
  89. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463.  https://doi.org/10.1128/AEM.68.11.5459-5463.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Rosa M, del Carmen Morán M, da Graça Miguel M, Lindman B (2007) The association of DNA and stable catanionic amino acid-based vesicles. Colloids Surfaces A Physicochem Eng Asp 301:361–375.  https://doi.org/10.1016/j.colsurfa.2006.12.082 CrossRefGoogle Scholar
  91. Sandle T, Vijayakumar R, Saleh Al Aboody M, Saravanakumar S (2014) In vitro fungicidal activity of biocides against pharmaceutical environmental fungal isolates. J Appl Microbiol 117:1267–1273.  https://doi.org/10.1111/jam.12628 CrossRefPubMedGoogle Scholar
  92. Sant DG, Tupe SG, Ramana CV, Deshpande MV (2016) Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 121:1498–1510.  https://doi.org/10.1111/jam.13301 CrossRefPubMedGoogle Scholar
  93. Shaban SM, Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY (2014) Synthesis, surface, thermodynamic properties and biological activity of dimethylaminopropylamine surfactants. J Ind Eng Chem 20:4194–4201.  https://doi.org/10.1016/j.jiec.2014.01.020 CrossRefGoogle Scholar
  94. Shaban SM, Aiad I, El-Sukkary MM, Soliman EA, El-Awady MY (2015a) Evaluation of some cationic surfactants based on dimethylaminopropylamine as corrosion inhibitors. J Ind Eng Chem 21:1029–1038.  https://doi.org/10.1016/j.jiec.2014.05.012 CrossRefGoogle Scholar
  95. Shaban SM, Aiad I, Fetouh HA, Maher A (2015b) Amidoamine double tailed cationic surfactant based on dimethylaminopropylamine: synthesis, characterization and evaluation as biocide. J Mol Liq 212:699–707.  https://doi.org/10.1016/j.molliq.2015.10.024 CrossRefGoogle Scholar
  96. Shirai A, Sumitomo T, Kurimoto M, Maseda H, Kourai H (2009) The mode of the antifungal activity of gemini-pyridinium salt against yeast. Biocontrol Sci 14:13–20.  https://doi.org/10.4265/bio.14.13 CrossRefPubMedGoogle Scholar
  97. Singare PU, Mhatre JD (2012) Cationic surfactants from arginine: synthesis and physicochemical properties. Am J Chem 2:186–190.  https://doi.org/10.5923/j.chemistry.20120204.02 CrossRefGoogle Scholar
  98. Singh A, Tyagi VK (2014) Arginine based novel cationic surfactants: a review. Tenside Surfactants Deterg 51:202–214.  https://doi.org/10.3139/113.110299 CrossRefGoogle Scholar
  99. Stenbæk J, Löf D, Falkman P, Jensen B, Cárdenas M (2017) An alternative anionic bio-sustainable anti-fungal agent: investigation of its mode of action on the fungal cell membrane. J Colloid Interface Sci 497:242–248.  https://doi.org/10.1016/j.jcis.2017.03.018 CrossRefPubMedGoogle Scholar
  100. Szkolnik M, Gilpatrick JD (1969) Apparent resistance of Venturia inaequalis to dodine in New York apple orchards. Plant Dis Report 53:861–864Google Scholar
  101. Tavano L, Pinazo A, Abo-Riya M, Infante MRR, Manresa MAA, Muzzalupo R, Pérez L (2014) Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release. Colloids Surf B Biointerfaces 120:160–167.  https://doi.org/10.1016/j.colsurfb.2014.04.009 CrossRefPubMedGoogle Scholar
  102. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159.  https://doi.org/10.1007/s13225-018-0401-0 CrossRefGoogle Scholar
  103. Terjung N, Loeffler M, Gibis M, Salminen H, Hinrichs J, Weiss J (2014) Impact of lauric arginate application form on its antimicrobial activity in meat emulsions. Food Biophys 9:88–98.  https://doi.org/10.1007/s11483-013-9321-4 CrossRefGoogle Scholar
  104. Tezel U, Pavlostathis SG (2015) Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Curr Opin Biotechnol 33:296–304.  https://doi.org/10.1016/j.copbio.2015.03.018 CrossRefPubMedGoogle Scholar
  105. Tóth A, Petróczy M, Hegedűs M, Nagy G, Lovász C, Ágoston J, Palkovics L (2012) Development of plant protection technology against sour cherry anthracnose. In: György J, Kövics GJ, Dávid I (eds) 6th International Plant Protection Symposium at University of Debrecen. Journal of agricultural sciences. Acta agraria debreceniensis, Debrecen, Hungary, pp 54–59Google Scholar
  106. Tripathy DB, Mishra A, Clark J, Farmer T (2018) Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: a review. Comptes Rendus Chim 21:112–130.  https://doi.org/10.1016/j.crci.2017.11.005 CrossRefGoogle Scholar
  107. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74:ftw018.  https://doi.org/10.1093/femspd/ftw018 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Tyagi S, Tyagi VK (2014) Novel cationic gemini surfactants and methods for determination of their antimicrobial activity—review. Tenside Surfactants Deterg 51:379–386.  https://doi.org/10.3139/113.110319 CrossRefGoogle Scholar
  109. van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322PubMedPubMedCentralGoogle Scholar
  110. Vieira DB, Carmona-Ribeiro AM (2006) Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother 58:760–767.  https://doi.org/10.1093/jac/dkl312 CrossRefPubMedGoogle Scholar
  111. Wang L-F, He D-Q, Tong Z-H, Li W-W, Yu H-Q (2014) Characterization of dewatering process of activated sludge assisted by cationic surfactants. Biochem Eng J 91:174–178.  https://doi.org/10.1016/j.bej.2014.08.008 CrossRefGoogle Scholar
  112. Weber DJ, Rutala WA (2013) Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control 41:S31–S35.  https://doi.org/10.1016/j.ajic.2012.12.005 CrossRefPubMedGoogle Scholar
  113. Yagura Y, Kirinuki T, Matsunaka S (1984) Mode of action of the fungicide guazatine in Alternaria kikuchiana. J Pestic Sci 9:425–431.  https://doi.org/10.1584/jpestics.9.425 CrossRefGoogle Scholar
  114. Yoder KS, Klos EJ (1976) Tolerance to dodine in Venturia inaequalis. Phytopathology 66:918–923CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación de Proteínas Vegetales (CIPROVE-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasCentro Asociado CIC PBA, UNLPLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET-UNLP)La PlataArgentina
  4. 4.Instituto de Fisiología Vegetal (INFIVE-CONICET-UNLP) and Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, UNLPLa PlataArgentina
  5. 5.Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLPLa PlataArgentina

Personalised recommendations