Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 489–503 | Cite as

Enhancement of corn stover conversion to carboxylates by extrusion and biotic triggers in solid-state fermentation

  • Antonella Marone
  • Eric TrablyEmail author
  • Hélène Carrère
  • Pacôme Prompsy
  • Fabienne Guillon
  • Maud Joseph-Aimé
  • Abdellatif Barakat
  • Nour Fayoud
  • Nicolas Bernet
  • Renaud Escudié
Environmental biotechnology


Solid-state fermentation is a potential technology for developing lignocellulosic biomass-based biorefineries. This work dealt with solid-state fermentation for carboxylates production from corn stover, as building blocks for a lignocellulosic feedstock-based biorefinery. The effect of extrusion pretreatment, together with the action of a microbial consortia and hydrolytic enzymes as biotic triggers, was investigated on corn stover conversion, microbial metabolic pathways, and populations. The extrusion caused changes in the physical and morphological characteristics, without altering the biochemical composition of the corn stover. Extrusion also led to remarkable differences in the composition of the indigenous microbial population of the substrate. Consequently, it affected the structure of community developed after fermentation and the substrate conversion yield, which increased by 118% (from 23 ± 4 gCOD/kgVSi obtained with raw substrate to 51 ± 1 gCOD/kgVSi with extruded corn stover) with regard to self-fermentation experiments. The use of activated sludge as inoculum further increased the total substrate conversion into carboxylates, up to 60 ± 2 gCOD/kgVSi, and shaped the microbial communities (mainly composed of bacteria from the Clostridia and Bacteroidia classes) with subsequent homogenization of the fermentation pathways. The addition of hydrolytic enzymes into the reactors further increased the corn stover conversion, leading to a maximum yield of 142 ± 1 gCOD/kgVSi. Thus, extrusion pretreatment combined with the use of an inoculum and enzyme addition increased by 506% corn stover conversion into carboxylates. Beside biomass pretreatment, the results of this study indicated that biotic factor greatly impacted solid-state fermentation by shaping the microbial communities and related metabolic pathways.


Solid-state fermentation Mixed culture Pretreatment Lignocellulosic biomass Carboxylates Environmental biorefinery 



We thank Valérie Méchin for her help for the lignin content measurements. We are indebted to Marie-Jeanne Crepeau for her technical assistance. We thank Marie-Françoise Devaux for her help in image acquisition and analysis, and Xavier Falourd and the IBISA/BioGenOuest Biopolymers Structural Biology platform for the measurement of cellulose crystallinity index by solid-state 13C nuclear magnetic resonance. The authors gratefully acknowledge Gaëlle Santa-Catalina for molecular biology practices.


This study was funded by The French National Research Agency (ANR) project 14-CE19-0013, Hi-Solids.

Compliance with ethical standards

Conflict of interest

Antonella Marone declares that she has no conflict of interest. Eric Trably declares that he has no conflict of interest. Helene Carrere declares that she has no conflict of interest. Pacome Prompsy declares that he has no conflict of interest. Fabienne Guillon declares that she has no conflict of interest. Maud Joseph-Aimé declares that she has no conflict of interest. Abdellatif Barakat declares that he has no conflict of interest. Nour Fayoud declares that she has no conflict of interest. Nicolas Bernet declares that he has no conflict of interest. Renaud Escudié declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9463_MOESM1_ESM.pdf (323 kb)
ESM 1 (PDF 322 kb)


  1. Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–212. CrossRefGoogle Scholar
  2. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. CrossRefPubMedGoogle Scholar
  3. American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC.
  4. Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, Strik DPBTB, Grootscholten TIM, Buisman CJN, Hamelers HVM (2016) Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol.
  5. Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745. CrossRefGoogle Scholar
  6. Bollon J, Benbelkacem H, Gourdon R, Buffière P (2013) Measurement of diffusion coefficients in dry anaerobic digestion media. Chem Eng Sci 89:115–119. CrossRefGoogle Scholar
  7. Cabrol L, Marone A, Tapia E, Steyer J-P, Ruiz-Filippi G, Trably E (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Ecol Rev 41:158–181. CrossRefGoogle Scholar
  8. Chen X, Zhang Y, Gu Y, Liu Z, Shen Z, Chu H, Zhou X (2014) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41. CrossRefGoogle Scholar
  9. Darvekar P, Holtzapple MT (2016) Assessment of shock pretreatment of corn stover using the carboxylate platform. Appl Biochem Biotechnol 178:1081–1094. CrossRefPubMedGoogle Scholar
  10. de Vrije T, de Haas G, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390.
  11. Devaux MF, Taralova I, Levy-Vehel J, Bonnin E, Thibault JF, Guillon F (2006) Contribution of image analysis to the description of enzymatic degradation kinetics for particulate food material. J Food Eng 77:1096–1107. CrossRefGoogle Scholar
  12. Devaux MF, Bouchet B, Legland D, Guillon F, Lahaye M (2008) Macro-vision and grey level granulometry for quantification of tomato pericarp structure. Postharvest Biol Technol 47:199–209. CrossRefGoogle Scholar
  13. Felby C, Thygesen LG, Kristensen JB, Jørgensen H, Elder T (2008) Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15:703–710. CrossRefGoogle Scholar
  14. Food And Agriculture Organization of The United Nations (2013) Fao statistical yearbook 2013: world food and agriculture. Rome 1:1–289.
  15. García-Bernet D, Buffière P, Latrille E, Steyer JP, Escudié R (2011) Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem Eng J 172:924–928. CrossRefGoogle Scholar
  16. Hodge DB, Karim MN, Schell DJ, McMillan JD (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152:88–107. CrossRefPubMedGoogle Scholar
  17. Jeon BS, Kim B-C, Um Y, Sang B-I (2010) Production of hexanoic acid from d-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol 88:1161–1167. CrossRefPubMedGoogle Scholar
  18. Karunanithy C, Muthukumarappan K (2011) Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochem Eng J 54:71–82. CrossRefGoogle Scholar
  19. Kong D, Wang Y, Zhao B, Li Y, Song J, Zhai Y, Zhang C, Wang H, Chen X, Zhao B, Ruan Z (2014) Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 64:2593–2598. CrossRefPubMedGoogle Scholar
  20. Kothari R, Pandey AK, Kumar S, Tyagi VV, Tyagi SK (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sust Energ Rev 39:174–195. CrossRefGoogle Scholar
  21. Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy 34:1703–1710. CrossRefGoogle Scholar
  22. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15:821–826. CrossRefGoogle Scholar
  23. Marone A, Massini G, Patriarca C, Signorini A, Varrone C, Izzo G (2012) Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int J Hydrog Energy 37:5612–5622. CrossRefGoogle Scholar
  24. Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13. CrossRefGoogle Scholar
  25. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714. CrossRefPubMedGoogle Scholar
  26. Monlau F, Kaparaju P, Trably E, Steyer JP, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385. CrossRefGoogle Scholar
  27. Moscoviz R, Trably E, Bernet N (2016) Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotechnol Biofuels 9:32. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Motte J-C, Sambusiti C, Dumas C, Barakat A (2015a) Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: an innovative strategy for biofuels and volatile fatty acids recovery. Appl Energy 147:67–73. CrossRefGoogle Scholar
  29. Motte J, Watteau F, Escudié R, Steyer J, Bernet N, Delgenes J, Dumas C (2015b) Dynamic observation of the biodegradation of lignocellulosic tissue under solid-state anaerobic conditions. Bioresour Technol 191:322–326. CrossRefPubMedGoogle Scholar
  30. Mussatto SI, Dragone GM (2016) Biomass pretreatment, biorefineries, and potential products for a bioeconomy development. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 1–22Google Scholar
  31. Muthukumarappan K, Karunanithy C (2016) Extrusion processing: opportunities and challenges toward biofuel. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 57–79CrossRefGoogle Scholar
  32. Myat L, Ryu GH (2014) Characteristics of destarched corn fiber extrudates for ethanol production. J Cereal Sci 60:289–296. CrossRefGoogle Scholar
  33. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739. CrossRefPubMedGoogle Scholar
  34. Ning L, Villota R, Artz WR (1991) Modification of corn fiber through chemical treatments in combination with twin-screw extrusion. Cereal Chem 68:632–636Google Scholar
  35. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371. CrossRefGoogle Scholar
  36. Panepinto D, Genon G (2016) Analysis of the extrusion as a pretreatment for the anaerobic digestion process. Ind Crop Prod 83:206–212. CrossRefGoogle Scholar
  37. Pierra M, Trably E, Godon J-J, Bernet N (2014) Fermentative hydrogen production under moderate halophilic conditions. Int J Hydrog Energy 39:7508–7517. CrossRefGoogle Scholar
  38. Pimenova NV, Hanley TR (2004) Effect of corn stover on suspension properties effect of corn stover concentration on rheological characteristics. Appl Biochem Biotechnol 113-116:347–360CrossRefGoogle Scholar
  39. Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, Coutinho PM, Henrissat B, Nelson KE (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60:721–729. CrossRefPubMedGoogle Scholar
  40. Ralet M-C, Thibault J-F, Della Valle G (1990) Influence of extrusion-cooking on the physico-chemical properties of wheat bran. J Cereal Sci 11:249–259. CrossRefGoogle Scholar
  41. Ralet M-C, Della Valle G, Thibault J-F (1993) Raw and extruded fibre from pea hulls. Part I: Composition and physico-chemical properties. Carbohydr Polym 20:17–23. CrossRefGoogle Scholar
  42. Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amado R, Thibault J-F (2000) Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT Food Sci Technol 33:72–79. CrossRefGoogle Scholar
  43. Sambusiti C, Licari A, Solhy A, Aboulkas A, Cacciaguerra T, Barakat A (2015) One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour Technol 181:200–206. CrossRefPubMedGoogle Scholar
  44. Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, hal- linger GGT, Van Horn D, Weber P, CF S, SL W, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski WC (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Timpano H, Sibout R, Devaux MF, Alvarado C, Looten R, Falourd X, Pontoire B, Martin M, Legée F, Cézard L, Lapierre C, Badel E, Citerne S, Vernhettes S, Höfte H, Guillon F, Gonneau M (2015) Brachypodium cell wall mutant with enhanced saccharification potential despite increased lignin content. Bioenergy Res 8:53–67. CrossRefGoogle Scholar
  46. Tollier M-T, Robin J-P (1979) Adaptation de la méthode à l’orcinol sulfurique au dosage automatique des glucides neutres totaux: conditions d’application aux extraits d’origine végétale. Ann Technol Agric 28:1–15Google Scholar
  47. Vidal BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion—a review. Appl Biochem Biotechnol 164:1405–1421. CrossRefPubMedGoogle Scholar
  48. Xing D, Ren N, Rittmann BE (2008) Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Appl Environ Microbiol 74:1232–1239. CrossRefPubMedGoogle Scholar
  49. Yoo J, Alavi S, Vadlani P, Amanor-Boadu V (2011) Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour Technol 102:7583–7590. CrossRefPubMedGoogle Scholar
  50. Zhang S, Keshwani DR, Xu Y, Hanna MA (2012) Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind Crop Prod 37:352–357. CrossRefGoogle Scholar
  51. Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zheng J, Choo K, Rehmann L (2015) The effects of screw elements on enzymatic digestibility of corncobs after pretreatment in a twin-screw extruder. Biomass Bioenergy 74:224–232. CrossRefGoogle Scholar
  53. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101:7523–7528. CrossRefPubMedGoogle Scholar
  54. Zoetemeyer RJ, van den Heuvel JC, Cohen A (1982) pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res 16:303–311. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antonella Marone
    • 1
    • 2
  • Eric Trably
    • 1
    Email author
  • Hélène Carrère
    • 1
  • Pacôme Prompsy
    • 1
  • Fabienne Guillon
    • 3
  • Maud Joseph-Aimé
    • 3
  • Abdellatif Barakat
    • 4
  • Nour Fayoud
    • 4
    • 5
  • Nicolas Bernet
    • 1
  • Renaud Escudié
    • 1
  1. 1.LBE, INRAUniv MontpellierNarbonneFrance
  2. 2.GENOCOV, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.UR1268 BIA, INRANantesFrance
  4. 4.UMR, IATE, CIRAD, Montpellier SupAgro, INRAUniversité de MontpellierMontpellierFrance
  5. 5.Mohammed VI Polytechnic UniversityBen GuerirMorocco

Personalised recommendations