Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 27–37 | Cite as

Microbial biosurfactants for oil spill remediation: pitfalls and potentials

  • Seema PatelEmail author
  • Ahmad HomaeiEmail author
  • Sangram Patil
  • Achlesh Daverey
Mini-Review

Abstract

Spillage of fossil-based oils during their conveyance through water conduits are sporadic, but significant environmental disasters. As the viscous hydrocarbons of the crude oils spread on water surface and choke aquatic life to death, their effective degradation is crucial for ecological balance. Though chemical and mechanical means are conventional ways to tackle the issues, they are riddled with limitations. In this scenario, coercing the biosurfactant-producing bacteria and fungi are promising avenues. Biosurfactants, the amphiphilic compounds, are capable of reducing interfacial tension, dispersing the oil particles, and degrading them into non-toxic debris. Among the vast array of biosurfactants, the trio of rhamnolipid, sophorolipid, and surfactin have been characterized well. Among the microbes, only Pseudomonas, Bacillus, and Candida have been evaluated, while there can be other exploitable candidates. In this regard, this review discusses the scopes and hurdles in utilization of the microbial surface-active compounds for oil spill management.

Keywords

Biosurfactant Oil spill Rhamnolipids Sophorolipids Surfactins Bioremediation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

In this review work, no human or animal subjects have been used. All ethics of publication has been adhered to in preparing this manuscript.

References

  1. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157:329–345.  https://doi.org/10.1007/s12010-008-8285-1 CrossRefPubMedGoogle Scholar
  2. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336.  https://doi.org/10.1007/s00253-010-2498-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301.  https://doi.org/10.1002/jat.1521 CrossRefPubMedGoogle Scholar
  4. Alonso S, Martin PJ (2016) Impact of foaming on surfactin production by Bacillus subtilis: implications on the development of integrated in situ foam fractionation removal systems. Biochem Eng J 110:125–133.  https://doi.org/10.1016/j.bej.2016.02.006 CrossRefGoogle Scholar
  5. Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang X-X, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16:2267–2281.  https://doi.org/10.1111/1462-2920.12469 CrossRefPubMedGoogle Scholar
  6. Anburajan L, Meena B, Raghavan RV, Joseph TC, Vinithkumar NV, Dharani G, Kirubagaran R (2016) Molecular characterization, structure prediction and insilico analysis of hydrocarbon degrading surfactin synthetase from marine sponge-associated Bacillus licheniformis NIOT-06Google Scholar
  7. Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:274.  https://doi.org/10.3389/fmicb.2015.00274 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715.  https://doi.org/10.1021/es2013227 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Atlas RM, Stoeckel DM, Faith SA, Minard-Smith A, Thorn JR, Benotti MJ (2015) Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environ Sci Technol 49:8356–8366.  https://doi.org/10.1021/acs.est.5b00413 CrossRefPubMedGoogle Scholar
  10. Baek K-H, Kim H-S, Oh H-M, Yoon B-D, Kim J, Lee I-S (2004) Effects of crude oil, oil components, and bioremediation on plant growth. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2465–2472CrossRefGoogle Scholar
  11. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697.  https://doi.org/10.3389/fmicb.2014.00697 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barros A, Alvarez D, Velando A (2014) Long-term reproductive impairment in a seabird after the Prestige oil spill. Biol Lett 10:20131041.  https://doi.org/10.1098/rsbl.2013.1041 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bazire A, Dufour A (2014) The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 14:160.  https://doi.org/10.1186/1471-2180-14-160 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bhardwaj G, Cameotra SS, Chopra HK (2013) Utilization of oleo-chemical industry by-products for biosurfactant production. AMB Express 3:68.  https://doi.org/10.1186/2191-0855-3-68 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bian X-Y, Mbadinga SM, Liu Y-F, Yang S-Z, Liu J-F, Ye R-Q, Gu J-D, Mu B-Z (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801.  https://doi.org/10.1038/srep09801 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brussaard CPD, Peperzak L, Beggah S, Wick LY, Wuerz B, Weber J, Samuel Arey J, van der Burg B, Jonas A, Huisman J, van der Meer JR (2016) Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nat Commun 7:11206.  https://doi.org/10.1038/ncomms11206 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199.  https://doi.org/10.1016/j.biortech.2007.05.035 CrossRefPubMedGoogle Scholar
  18. Chandran P, Das N (2012) Role of sophorolipid biosurfactant in degradation of diesel oil by Candida tropicalis. Bioremediat J 16:19–30.  https://doi.org/10.1080/10889868.2011.628351 CrossRefGoogle Scholar
  19. Chilvers BL, Morgan KM, Finlayson G, Sievwright KA (2015) Diving behaviour of wildlife impacted by an oil spill: a clean-up and rehabilitation success? Mar Pollut Bull 100:128–133.  https://doi.org/10.1016/j.marpolbul.2015.09.019 CrossRefPubMedGoogle Scholar
  20. Ciesielska K, Van Bogaert IN, Chevineau S, Li B, Groeneboer S, Soetaert W, Van de Peer Y, Devreese B (2014) Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. J Proteome 98:159–174.  https://doi.org/10.1016/j.jprot.2013.12.026 CrossRefGoogle Scholar
  21. Dadrasnia A, Ismail S (2015) Biosurfactant production by Bacillus salmalaya for lubricating oil solubilization and biodegradation. Int J Environ Res Public Health 12:9848–9863.  https://doi.org/10.3390/ijerph120809848 CrossRefPubMedPubMedCentralGoogle Scholar
  22. DʼAndrea MA, Reddy GK (2014) Crude oil spill exposure and human health risks. J Occup Environ Med 56:1029–1041.  https://doi.org/10.1097/JOM.0000000000000217 CrossRefPubMedGoogle Scholar
  23. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810.  https://doi.org/10.4061/2011/941810 CrossRefPubMedGoogle Scholar
  24. Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674.  https://doi.org/10.1007/s12010-008-8449-z CrossRefPubMedGoogle Scholar
  25. Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surfaces B Biointerfaces 79:246–253.  https://doi.org/10.1016/j.colsurfb.2010.04.002 CrossRefPubMedGoogle Scholar
  26. Daverey A, Pakshirajan K (2011) Recent advances in bioremediation of contaminated soil and water using microbial surfactants. In: Microbes and microbial technology. Springer, New York, pp 207–228CrossRefGoogle Scholar
  27. de Cássia F S Silva R, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542.  https://doi.org/10.3390/ijms150712523 CrossRefPubMedGoogle Scholar
  28. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  29. Dhasayan A, Selvin J, Kiran S (2015) Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. 3 Biotech 5:443–454.  https://doi.org/10.1007/s13205-014-0242-9 CrossRefPubMedGoogle Scholar
  30. Duarte RM, Honda RT, Val AL (2010) Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquat Toxicol 97:134–141.  https://doi.org/10.1016/j.aquatox.2009.12.020 CrossRefPubMedGoogle Scholar
  31. Dubern J-F, Lagendijk EL, Lugtenberg BJJ, Bloemberg GV (2005) The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol 187:5967–5976.  https://doi.org/10.1128/JB.187.17.5967-5976.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184CrossRefGoogle Scholar
  33. Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475.  https://doi.org/10.1016/j.sjbs.2014.11.018 CrossRefPubMedGoogle Scholar
  34. Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324.  https://doi.org/10.3389/fmicb.2015.01324 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173.  https://doi.org/10.3389/fmicb.2014.00173 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fondi M, Maida I, Perrin E, Orlandini V, La Torre L, Bosi E, Negroni A, Zanaroli G, Fava F, Decorosi F, Giovannetti L, Viti C, Vaneechoutte M, Dijkshoorn L, Fani R (2016) Genomic and phenotypic characterization of the species Acinetobacter venetianus. Sci Rep 6:21985.  https://doi.org/10.1038/srep21985 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fragoso Ados Santos H, Duarte GA, Rachid CT, Chaloub RM, Calderon EN, Marangoni LF, Bianchini A, Nudi AH, do Carmo FL, van Elsas JD, Rosado AS, Castro CB, Peixoto RS (2015) Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci Rep 5:18268.  https://doi.org/10.1038/srep18268 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Freitas BG, Brito JGM, Brasileiro PPF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1646.  https://doi.org/10.3389/fmicb.2016.01646 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fu SL, Wallner SR, Bowne WB, Hagler MD, Zenilman ME, Gross R, Bluth MH (2008) Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J Surg Res 148:77–82.  https://doi.org/10.1016/j.jss.2008.03.005 CrossRefPubMedGoogle Scholar
  40. Gray JL, Kanagy LK, Furlong ET, Kanagy CJ, McCoy JW, Mason A, Lauenstein G (2014) Presence of the Corexit component dioctyl sodium sulfosuccinate in Gulf of Mexico waters after the 2010 Deepwater Horizon oil spill. Chemosphere 95:124–130.  https://doi.org/10.1016/j.chemosphere.2013.08.049 CrossRefPubMedGoogle Scholar
  41. Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59.  https://doi.org/10.3389/fmicb.2015.00059 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gudiña EJ, Teixeira JA, Rodrigues LR (2016) Biosurfactants produced by marine microorganisms with therapeutic applications. Mar Drugs 14.  https://doi.org/10.3390/md14020038
  43. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540.  https://doi.org/10.1016/j.micres.2013.12.001 CrossRefPubMedGoogle Scholar
  44. Hardin R, Pierre J, Schulze R, Mueller CM, Fu SL, Wallner SR, Stanek A, Shah V, Gross RA, Weedon J, Nowakowski M, Zenilman ME, Bluth MH (2007) Sophorolipids improve sepsis survival: effects of dosing and derivatives. J Surg Res 142:314–319.  https://doi.org/10.1016/j.jss.2007.04.025 CrossRefPubMedGoogle Scholar
  45. Harris BC, Bonner JS, McDonald TJ, Fuller CB, Page CA (2002) Bioavailability of chemically-dispersed crude oil. Proc Twenty-fifth Arct Mar Oil Spill Conf Environ Canada, Ottawa, pp 895–905Google Scholar
  46. Hasegawa R, Toyama K, Miyanaga K, Tanji Y (2014) Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Appl Microbiol Biotechnol 98:1853–1861.  https://doi.org/10.1007/s00253-013-5107-3 CrossRefPubMedGoogle Scholar
  47. He Z, Zeng W, Zhu X, Zhao H, Lu Y, Lu Z (2017) Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid. Colloids Surfaces B Biointerfaces 151:232–239.  https://doi.org/10.1016/j.colsurfb.2016.12.026 CrossRefPubMedGoogle Scholar
  48. Hirata Y, Ryu M, Igarashi K, Nagatsuka A, Furuta T, Kanaya S, Sugiura M (2009) Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities. J Oleo Sci 58:565–572CrossRefGoogle Scholar
  49. Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD (2012) Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci U S A 109:13082–13087.  https://doi.org/10.1073/pnas.1205586109 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jackson SA, Borchert E, O’Gara F, Dobson AD (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol 33:176–182.  https://doi.org/10.1016/j.copbio.2015.03.004 CrossRefPubMedGoogle Scholar
  51. Jajor P, Piłakowska-Pietras D, Krasowska A, Łukaszewicz M (2016) Surfactin analogues produced by Bacillus subtilis strains grown on rapeseed cake. J Mol Struct 1126:141–146.  https://doi.org/10.1016/j.molstruc.2016.02.014 CrossRefGoogle Scholar
  52. Jin L, Garamus VM, Liu F, Xiao J, Eckerlebe H, Willumeit-Römer R, Mu B, Zou A (2016) Interaction of a biosurfactant, surfactin with a cationic Gemini surfactant in aqueous solution. J Colloid Interface Sci 481:201–209.  https://doi.org/10.1016/j.jcis.2016.07.044 CrossRefPubMedGoogle Scholar
  53. Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int 2013:169797.  https://doi.org/10.1155/2013/169797 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kang S-W, Kim Y-B, Shin J-D, Kim E-K (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790.  https://doi.org/10.1007/s12010-009-8580-5 CrossRefPubMedGoogle Scholar
  55. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 5:603.  https://doi.org/10.3389/fmicb.2014.00603 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J (2015) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol:1–17.  https://doi.org/10.3109/07388551.2014.979758
  57. Konishi M, Yoshida Y, Horiuchi J (2015) Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J Biosci Bioeng 119:317–322.  https://doi.org/10.1016/j.jbiosc.2014.08.007 CrossRefPubMedGoogle Scholar
  58. Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212.  https://doi.org/10.3389/fmicb.2015.00212 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568.  https://doi.org/10.1016/j.nbt.2015.03.006 CrossRefGoogle Scholar
  60. Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339.  https://doi.org/10.1007/s00253-013-4740-1 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310CrossRefGoogle Scholar
  62. Li X, Zhang Y, Wei Z, Guan Z, Cai Y, Liao X (2016) Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS One 11:e0162125.  https://doi.org/10.1371/journal.pone.0162125 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Liu Y, Kujawinski EB (2015) Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from ESI FT-ICR MS. PLoS One 10:e0136376.  https://doi.org/10.1371/journal.pone.0136376 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu J, Chen Y, Xu R, Jia Y (2013) Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater. Indian J Microbiol 53:168–174.  https://doi.org/10.1007/s12088-013-0379-y CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liu J-F, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837.  https://doi.org/10.3390/ijms16034814 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  67. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5.  https://doi.org/10.1186/2191-0855-1-5 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Marti ME, Colonna WJ, Patra P, Zhang H, Green C, Reznik G, Pynn M, Jarrell K, Nyman JA, Somasundaran P, Glatz CE, Lamsal BP (2014) Production and characterization of microbial biosurfactants for potential use in oil-spill remediation. Enzym Microb Technol 55:31–39.  https://doi.org/10.1016/j.enzmictec.2013.12.001 CrossRefGoogle Scholar
  69. Mexico C on the E of the DHMC-252 OS on ES in the G of, Board OS, Studies D on E and L, Council NR (2013) Oil Spill Response TechnologiesGoogle Scholar
  70. Millemann DR, Portier RJ, Olson G, Bentivegna CS, Cooper KR (2015) Particulate accumulations in the vital organs of wild Brevoortia patronus from the northern Gulf of Mexico after the Deepwater Horizon oil spill. Ecotoxicology 24:1831–1847.  https://doi.org/10.1007/s10646-015-1520-y CrossRefPubMedGoogle Scholar
  71. Mohanty S, Jasmine J, Mukherji S (2013) Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. Biomed Res Int 2013:328608.  https://doi.org/10.1155/2013/328608 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Monson DH, Doak DF, Ballachey BE, Johnson A, Bodkin JL (2000) Long-term impacts of the Exxon Valdez oil spill on sea otters, assessed through age-dependent mortality patterns. Proc Natl Acad Sci 97:6562–6567.  https://doi.org/10.1073/pnas.120163397 CrossRefPubMedGoogle Scholar
  73. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198.  https://doi.org/10.1016/j.envpol.2004.06.009 CrossRefPubMedGoogle Scholar
  74. Nakano M, Kihara M, Iehata S, Tanaka R, Maeda H, Yoshikawa T (2011) Wax ester-like compounds as biosurfactants produced by Dietzia maris from n -alkane as a sole carbon source. J Basic Microbiol 51:490–498.  https://doi.org/10.1002/jobm.201000420 CrossRefPubMedGoogle Scholar
  75. Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743.  https://doi.org/10.1016/j.watres.2007.10.038 CrossRefPubMedGoogle Scholar
  76. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643.  https://doi.org/10.1016/j.biotechadv.2010.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Nwaguma IV, Chikere CB, Okpokwasili GC (2016) Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour Bioprocess 3:40.  https://doi.org/10.1186/s40643-016-0118-4 CrossRefGoogle Scholar
  78. Oliveira JS, Araújo W, Lopes Sales AI, de Brito Guerra A, da Silva Araújo SC, de Vasconcelos ATR, Agnez-Lima LF, Freitas AT (2015, 2015) BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. Database (Oxford).  https://doi.org/10.1093/database/bav033
  79. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654.  https://doi.org/10.3390/ijms12010633 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Patowary K, Patowary R, Kalita MC, Deka S (2016) Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol 7:1092.  https://doi.org/10.3389/fmicb.2016.01092 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Paulauskienė T, Jucikė I (2015) Aquatic oil spill cleanup using natural sorbents. Environ Sci Pollut Res 22:14874–14881.  https://doi.org/10.1007/s11356-015-4725-y CrossRefGoogle Scholar
  82. Penfold J, Chen M, Thomas RK, Dong C, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2011) Solution self-assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27:8867–8877.  https://doi.org/10.1021/la201661y CrossRefPubMedGoogle Scholar
  83. Peterson CH (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086.  https://doi.org/10.1126/science.1084282 CrossRefPubMedGoogle Scholar
  84. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563CrossRefGoogle Scholar
  85. Płaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P (2015) Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 119:1023–1034.  https://doi.org/10.1111/jam.12893 CrossRefPubMedGoogle Scholar
  86. Pornsunthorntawee O, Wongpanit P, Rujiravanit R (2010) Rhamnolipid biosurfactants: production and their potential in environmental biotechnology. Adv Exp Med Biol 672:211–221CrossRefGoogle Scholar
  87. Prince RC, Butler JD (2013) A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ Sci Pollut Res 21:9506–9510.  https://doi.org/10.1007/s11356-013-2053-7 CrossRefGoogle Scholar
  88. Ramachandran SD, Hodson PV, Khan CW, Lee K (2004) Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicol Environ Saf 59:300–308.  https://doi.org/10.1016/j.ecoenv.2003.08.018 CrossRefPubMedGoogle Scholar
  89. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016.  https://doi.org/10.1007/s00253-012-4641-8 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401.  https://doi.org/10.3390/ijms17030401 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shete AM, Chopade BA (2010) Molecular genetics of biosurfactant synthesis in microorganisms. Adv Exp Med Biol 672:14–41CrossRefGoogle Scholar
  92. Schmidt CW (2012) Offshore exploration to commence in the Arctic: can shell’s oil-spill response plans keep up? Environ Health Perspect 120:A194–A199.  https://doi.org/10.1289/ehp.120-a194 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Sekhon Randhawa KK, Rahman PKSM (2014) Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front Microbiol 5:454.  https://doi.org/10.3389/fmicb.2014.00454 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Solomon GM, Janssen S (2010) Health effects of the gulf oil spill. JAMA 304:1118–1119CrossRefGoogle Scholar
  95. Stahlhut SG, Chattopadhyay S, Struve C, Weissman SJ, Aprikian P, Libby SJ, Fang FC, Krogfelt KA, Sokurenko EV (2009) Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191:1941–1950.  https://doi.org/10.1128/JB.00601-08 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Takahashi M, Morita T, Wada K, Hirose N, Fukuoka T, Imura T, Kitamoto D (2011) Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. J Oleo Sci 60:267–273CrossRefGoogle Scholar
  97. Thies S, Santiago-Schübel B, Kovačić F, Rosenau F, Hausmann R, Jaeger K-E (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27–30.  https://doi.org/10.1016/j.jbiotec.2014.03.037 CrossRefPubMedGoogle Scholar
  98. Tian W, Yao J, Liu R, Zhu M, Wang F, Wu X, Liu H (2016) Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains. Ecotoxicol Environ Saf 129:171–179.  https://doi.org/10.1016/j.ecoenv.2016.03.027 CrossRefPubMedGoogle Scholar
  99. Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087CrossRefGoogle Scholar
  100. Uttlová P, Pinkas D, Bechyňková O, Fišer R, Svobodová J, Seydlová G (2016) Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim Biophys Acta Biomembr 1858:2965–2971.  https://doi.org/10.1016/j.bbamem.2016.09.006 CrossRefGoogle Scholar
  101. Van Bogaert INA, De Mey M, Demey M, Develter D, Soetaert W, Vandamme EJ (2009) Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res 9:87–94.  https://doi.org/10.1111/j.1567-1364.2008.00454.x CrossRefPubMedGoogle Scholar
  102. Van Bogaert INA, Zhang J, Soetaert W (2011) Microbial synthesis of sophorolipids. Process Biochem 46:821–833.  https://doi.org/10.1016/j.procbio.2011.01.010 CrossRefGoogle Scholar
  103. Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin Y-C, Van de Peer Y, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88:501–509.  https://doi.org/10.1111/mmi.12200 CrossRefPubMedGoogle Scholar
  104. Varadavenkatesan T, Murty VR (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol 2013:621519.  https://doi.org/10.1155/2013/621519 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Vaughn SF, Behle RW, Skory CD, Kurtzman CP, Price NPJ (2014) Utilization of sophorolipids as biosurfactants for postemergence herbicides. Crop Prot 59:29–34.  https://doi.org/10.1016/j.cropro.2014.01.014 CrossRefGoogle Scholar
  106. Wadekar S, Patil S, Kale S, Lali AM, Bhowmick DN, Pratap AP (2010) Study of glycerol and sweet water as a carbon source for production of rhamnolipids by naturally occurring strains of Pseudomonas aeruginosa (ATCC 10145 and ATCC 9027). Tenside Surfactant Deterg 47:238–242.  https://doi.org/10.3139/113.110073 CrossRefGoogle Scholar
  107. Wang H, Xu J, Zhao W, Zhang J (2014) Effects and risk evaluation of oil spillage in the sea areas of Changxing Island. Int J Environ Res Public Health 11:8491–8507.  https://doi.org/10.3390/ijerph110808491 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Whang L-M, Liu P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163.  https://doi.org/10.1016/j.jhazmat.2007.05.063 CrossRefPubMedGoogle Scholar
  109. White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755.  https://doi.org/10.1111/jam.12287 CrossRefPubMedGoogle Scholar
  110. Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB, Rice CD, Galvez F (2012) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci U S A 109:20298–20302.  https://doi.org/10.1073/pnas.1109545108 CrossRefPubMedGoogle Scholar
  111. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878.  https://doi.org/10.1007/s00253-016-8041-3 CrossRefPubMedGoogle Scholar
  112. Xu Y, Ren C, Chen R, Zeng R (2016) Draft genome sequence of oil-degrading bacterium Gallaecimonas pentaromativorans strain YA_1 from the Southwest Indian Ocean. Genome Announc 4:e00764–e00716.  https://doi.org/10.1128/genomeA.00764-16 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Xue J, Yu Y, Bai Y, Wang L, Wu Y (2015) Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71:220–228.  https://doi.org/10.1007/s00284-015-0825-7 CrossRefPubMedGoogle Scholar
  114. Yang X, Zhu L, Xue C, Chen Y, Qu L, Lu W (2012) Recovery of purified lactonic sophorolipids by spontaneous crystallization during the fermentation of sugarcane molasses with Candida albicans O-13-1. Enzym Microb Technol 51:348–353.  https://doi.org/10.1016/j.enzmictec.2012.08.002 CrossRefGoogle Scholar
  115. Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R (2016) Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater 301:145–152.  https://doi.org/10.1016/j.jhazmat.2015.08.047 CrossRefPubMedGoogle Scholar
  116. Yin F, Hayworth JS, Clement TP (2015) A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues. PLoS One 10:e0118098.  https://doi.org/10.1371/journal.pone.0118098 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24:1540–1552.  https://doi.org/10.1094/MPMI-06-11-0162 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoUSA
  2. 2.Department of Marine Biology, Faculty of Marine Science and TechnologyUniversity of HormozganBandar AbbasIran
  3. 3.Department of Chemical EngineeringNational Institute of TechnologyRourkelaIndia
  4. 4.School of Environment and Natural ResourcesDoon UniversityDehradunIndia

Personalised recommendations