Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 24, pp 10675–10690 | Cite as

E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro

  • Asmaa Mawad
  • Yosra A. Helmy
  • Abdel-Gawad Shalkami
  • Dipak Kathayat
  • Gireesh Rajashekara
Applied microbial and cell physiology
  • 150 Downloads

Abstract

Microencapsulation enhances the oral delivery of probiotic bacteria. In this study, the probiotic Escherichia coli Nissle 1917 (EcN) was microencapsulated using alginate and chitosan nanoparticles. The result showed 90% encapsulation yield of EcN, and the encapsulated EcN displayed significantly (P < 0.05) increased survival in low pH (1.5), high bile salt concentration (4%), and high temperature (70 °C). The most effective cryopreservatives of EcN during freezing and thawing was skim milk and sucrose. Exposure to microencapsulated EcN significantly (P < 0.05) reduced the Campylobacter jejuni growth by 2 log CFU. The rate of EcN release from microcapsule was 9.2 × 105 cell min−1, and the appropriate model to describe its release kinetics was zero order. Importantly, the entrapment of EcN inside the microcapsule did not eliminate the exterior diffusion of EcN produced antioxidant compounds. In addition, the EcN microcapsule efficiently adhered to intestinal HT-29 cells and the pre-treatment of HT-29 cells with EcN-microcapsule for 4 h significantly (P < 0.05) reduced the invasion (1.9 log) of C. jejuni; whereas, completely abolished the intracellular survival. Furthermore, HT-29 cells pre-treated with encapsulated EcN in PCR array showed decreased expression (> 1.5-fold) of genes encoding chemokines, toll-like receptors, interleukins, and tumor necrosis factors. In conclusion, the alginate-chitosan microcapsule can provide effectual platform to deliver probiotic EcN and thereby can reduce the Campylobacter infection in chickens and humans.

Keywords

EcN Camplyobacter Microcapsulation Alginate Chitosan 

Notes

Acknowledgements

We thank Dr. Tea Meulia, Molecular and Cellular Imaging Center (https://mcic.osu.edu/home), Ohio Agricultural Research and Development Centrer (OARDC), The Ohio State University for providing assistance with confocal microscopy analyses.

Funding information

Research in Dr. Rajashekara’s laboratory was supported by funding from National Institute for Food and Agriculture (NIFA), U.S. Department of Agriculture, National Institute of Health, and Federal and State funds appropriated to the OARDC. Dr. Asmaa Mawad was supported by the Egyptian Ministry of Higher Education.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals.

References

  1. Alemka A, Clyne M, Shanahan F, Tompkins T, Corcionivoschi N, Bourke B (2010) Probiotic colonization of the adherent mucus layer of HT29MTXE12 cells attenuates Campylobacter jejuni virulence properties. Infect Immun 78(6):2812–2822CrossRefGoogle Scholar
  2. Allie N, Grivennikov SI, Keeton R, Hsu N-J, Bourigault M-L, Court N, Fremond C, Yeremeev V, Shebzukhov Y, Ryffel B, Nedospasov SA, Quesniaux VFJ, Jacobs M (2013) Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep 3:1809.  https://doi.org/10.1038/srep01809 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18(5):240–251CrossRefGoogle Scholar
  4. Andersen T, Markussen C, Dornish M, Heier-Baardson H, Melvik JE, Alsberg E, Christensen BE (2014) In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng A 20(3–4):600–610.  https://doi.org/10.1089/ten.tea.2013.0223 CrossRefGoogle Scholar
  5. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C, Pinelli G, Privitera G, Cesari I, Faierman SA (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease an RCT. Neurology 87(12):1274–1280CrossRefGoogle Scholar
  6. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M (2013) Probiotics: properties, examples, and specific applications. CSH Pespect Med 3(3):a010074Google Scholar
  7. Bielinska AU, Makidon PE, Janczak KW, Blanco LP, Swanson B, Smith DM, Pham T, Szabo Z, Kukowska-Latallo JF, Baker JR Jr (2014) Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant. J Immunol 192(6):2722–2733.  https://doi.org/10.4049/jimmunol.1301424 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao X, Lin H, Muskhelishvili L, Latendresse J, Richter P, Heflich RH (2015) Tight junction disruption by cadmium in an in vitro human airway tissue model. Respir Res 16:30.  https://doi.org/10.1186/s12931-015-0191-9 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carneiro-da-Cunha MG, Cerqueira MA, Souza BW, Carvalho S, Quintas MA, Teixeira JA, Vicente AA (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82(1):153–159CrossRefGoogle Scholar
  10. Chang S-H, Lin H-TV, Wu G-J, Tsai GJ (2015) pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81.  https://doi.org/10.1016/j.carbpol.2015.07.072 CrossRefPubMedGoogle Scholar
  11. Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, Villarán MC (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142(1):185–189.  https://doi.org/10.1016/j.ijfoodmicro.2010.06.022 CrossRefPubMedGoogle Scholar
  12. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67CrossRefGoogle Scholar
  13. Dash V, Mishra SK, Singh M, Goyal AK, Rath G (2010) Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm 78(1):93–101.  https://doi.org/10.3797/scipharm.0908-09 CrossRefPubMedGoogle Scholar
  14. De Giulio B, Orlando P, Barba G, Coppola R, De Rosa M, Sada A, De Prisco P, Nazzaro F (2005) Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World J Microbiol Biotechnol 21(5):739–746CrossRefGoogle Scholar
  15. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24CrossRefGoogle Scholar
  16. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, Pérez-Alvarez JA (2011) Resistant starch as prebiotic: a review. Starch - Stärke 63(7):406–415.  https://doi.org/10.1002/star.201000099 CrossRefGoogle Scholar
  17. Gangaiah D, Liu Z, Arcos J, Kassem II, Sanad Y, Torrelles JB, Rajashekara G (2010) Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS One 5(8):e12142CrossRefGoogle Scholar
  18. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J Royal Soc Interface 11(100):20140817.  https://doi.org/10.1098/rsif.2014.0817 CrossRefGoogle Scholar
  19. Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163CrossRefGoogle Scholar
  20. Goldenberg JZ, Ma SS, Saxton JD, Martzen MR, Vandvik PO, Thorlund K, Guyatt GH, Johnston BC (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 12:CD006095Google Scholar
  21. Gotoh T, Matsushima K, Kikuchi K-I (2004) Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55(1):135–140.  https://doi.org/10.1016/j.chemosphere.2003.11.016 CrossRefPubMedGoogle Scholar
  22. Grozdanov L, Zähringer U, Blum-Oehler G, Brade L, Henne A, Knirel YA, Schombel U, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Rietschel ET, Dobrindt U (2002) A single nucleotide exchange in the wzy gene is responsible for the Semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol 184(21):5912–5925.  https://doi.org/10.1128/JB.184.21.5912-5925.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Helmy YA, Kassem II, Kumar A, Rajashekara G (2017) In vitro evaluation of the impact of the probiotic E. coli Nissle 1917 on Campylobacter jejuni’s invasion and intracellular survival in human colonic cells. Front Microbiol 8(1588).  https://doi.org/10.3389/fmicb.2017.01588
  24. Henker J, Laass MW, Blokhin BM, Maydannik VG, Bolbot YK, Elze M, Wolff C, Schreiner A, Schulze J (2008) Probiotic Escherichia coli Nissle 1917 versus placebo for treating diarrhea of greater than 4 days duration in infants and toddlers. Pediatr Infect Dis J 27(6):494–499CrossRefGoogle Scholar
  25. Huebner C, Ding Y, Petermann I, Knapp C, Ferguson LR (2011) The probiotic Escherichia coli Nissle 1917 reduces pathogen invasion and modulates cytokine expression in Caco-2 cells infected with Crohn’s disease-associated E. coli LF82. Appl Environ Microbiol 77(7):2541–2544.  https://doi.org/10.1128/aem.01601-10 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joeres-Nguyen-Xuan TH, Boehm SK, Joeres L, Schulze J, Kruis W (2010) Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm Bowel Dis 16(2):256–262.  https://doi.org/10.1002/ibd.21042 CrossRefPubMedGoogle Scholar
  27. Kailasapathy K (2014) Microencapsulation for gastrointestinal delivery of probiotic bacteria. In: Nano-and microencapsulation for foods, pp 167–197CrossRefGoogle Scholar
  28. Kanmani P, Kumar RS, Yuvaraj N, Paari K, Pattukumar V, Arul V (2011) Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnol Bioprocess Eng 16(6):1106–1114CrossRefGoogle Scholar
  29. Kassem II, Khatri M, Esseili MA, Sanad YM, Saif YM, Olson JW, Rajashekara G (2012) Respiratory proteins contribute differentially to Campylobacter jejuni’s survival and in vitro interaction with hosts’ intestinal cells. BMC Microbiol 12(1):258CrossRefGoogle Scholar
  30. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422.  https://doi.org/10.1007/s13197-011-0251-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kelly C, Gundogdu O, Pircalabioru G, Cean A, Scates P, Linton M, Pinkerton L, Magowan E, Stef L, Simiz E (2017) The in vitro and in vivo effect of carvacrol in preventing Campylobacter infection, colonization and in improving productivity of chicken broilers. Foodborne Pathog Dis 14(6):341–349CrossRefGoogle Scholar
  32. Khosravi Zanjani MA, Ghiassi Tarzi B, Sharifan A, Mohammadi N (2014) Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran J Pharm Res 13(3):843–852PubMedPubMedCentralGoogle Scholar
  33. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, Cho C-S (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21CrossRefGoogle Scholar
  34. Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA (1985) A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152(3):592–596CrossRefGoogle Scholar
  35. Krasaekoopt W, Bhandari B, Deeth HC (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT-and conventionally treated milk during storage. LWT Food Sci Technol 39(2):177–183CrossRefGoogle Scholar
  36. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:1–14CrossRefGoogle Scholar
  37. Lau CSM, Chamberlain RS (2016) Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37.  https://doi.org/10.2147/IJGM.S98280 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126.  https://doi.org/10.1016/j.progpolymsci.2011.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu M, Zhong X, Yang Z (2017) Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci Rep 7:41322.  https://doi.org/10.1038/srep41322 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lorevice MV, Otoni CG, de Moura MR, Mattoso LHC (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high-and low-methyl pectin films. Food Hydrocoll 52:732–740CrossRefGoogle Scholar
  41. Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25CrossRefGoogle Scholar
  42. Mishima Y, Amano Y, Takahashi Y, Mishima Y, Moriyama N, Miyake T, Ishimura N, Ishihara S, Kinoshita Y (2009) Gastric emptying of liquid and solid meals at various temperatures. J Gastroenterol 44(5):412–418.  https://doi.org/10.1007/s00535-009-0022-1 CrossRefPubMedGoogle Scholar
  43. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273.  https://doi.org/10.1128/CMR.00046-08 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Navarro JB, Mashburn-Warren L, Bakaletz LO, Bailey MT, Goodman SD (2017) Enhanced probiotic potential of Lactobacillus reuteri when delivered as a biofilm on dextranomer microspheres that contain beneficial cargo. Front Microbiol 8Google Scholar
  45. Oskouei DD, Bekmen N, Ellidokuz H, Yılmaz Ö (2010) Evaluation of different cryoprotective agents in maintenance of viability of Helicobacter pylori in stock culture media. Braz J Microbiol 41(4):1038–1046.  https://doi.org/10.1590/S1517-838220100004000023 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pandey S, Singh A, Kumar P, Chaudhari A, Nareshkumar G (2014) Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1, 2-dimethylhydrazine-induced oxidative damage in colon and liver of rats. Appl Biochem Biotechnol 173(3):775–786CrossRefGoogle Scholar
  47. Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A (2017) Evidence of the anti-inflammatory effects of probiotics and Synbiotics in intestinal chronic diseases. Nutrients 9(6):555.  https://doi.org/10.3390/nu9060555 CrossRefPubMedCentralGoogle Scholar
  48. Reissbrodt R, Hammes WP, Dal Bello F, Prager R, Fruth A, Hantke K, Rakin A, Starcic-Erjavec M, Williams PH (2008) Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli. FEMS Microbiol Lett 290(1):62–69CrossRefGoogle Scholar
  49. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231(1):1–12CrossRefGoogle Scholar
  50. Sahoo M, Ceballos-Olvera I, del Barrio L, Re F (2011) Role of the Inflammasome, IL-1. Sci World J 11:2037–2050Google Scholar
  51. Scaldaferri F, Gerardi V, Mangiola F, Lopetuso LR, Pizzoferrato M, Petito V, Papa A, Stojanovic J, Poscia A, Cammarota G (2016) Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol 22(24):5505–5511CrossRefGoogle Scholar
  52. Schierack P, Kleta S, Tedin K, Babila JT, Oswald S, Oelschlaeger TA, Hiemann R, Paetzold S, Wieler LH (2011) E. coli Nissle 1917 affects Salmonella adhesion to porcine intestinal epithelial cells. PLoS One 6(2):e14712.  https://doi.org/10.1371/journal.pone.0014712 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schultz M, Burton JP (2017) Chapter 5 Escherichia coli Nissle 1917. In: The microbiota in gastrointestinal pathophysiology, pp 59–69CrossRefGoogle Scholar
  54. Shori AB (2017) Microencapsulation improved probiotics survival during gastric transit. HAYATI J Biosci 24(1):1–5.  https://doi.org/10.1016/j.hjb.2016.12.008 CrossRefGoogle Scholar
  55. Singh SJ, Gibbons NJ, Blackshaw P, Vincent M, Walker J, Perkins AC (2006) Gastric emptying of solids in normal children—a preliminary report. J Pediatr Surg 41(2):413–417CrossRefGoogle Scholar
  56. Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar PM (2013) Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. Biomed Res Int 2013:620719–620721.  https://doi.org/10.1155/2013/620719 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sonnenborn U (2016) Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 363(19):fnw212–fnw212.  https://doi.org/10.1093/femsle/fnw212 CrossRefGoogle Scholar
  58. Sonnenborn U, Schulze J (2009) The non-pathogenic Escherichia coli strain Nissle 1917–features of a versatile probiotic. Microb Ecol Health Dis 21(3–4):122–158CrossRefGoogle Scholar
  59. Stokes NR, Zhou X, Meltzer SJ, Kaper JB (2004) Transcriptional responses of intestinal epithelial cells to infection with Vibrio cholerae. Infect Immun 72(7):4240–4248CrossRefGoogle Scholar
  60. Trebichavsky I, Splichal I, Rada V, Splichalova A (2010) Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev 68(8):459–464CrossRefGoogle Scholar
  61. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582.  https://doi.org/10.1016/j.bbamcr.2014.05.014 CrossRefPubMedGoogle Scholar
  62. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, Bleich A, Bruder D, Franzke A, Rogler G, Suerbaum S, Buer J, Gunzer F, Westendorf AM (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2(12):e1308.  https://doi.org/10.1371/journal.pone.0001308 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Weise C, Zhu Y, Ernst D, Kuhl AA, Worm M (2011) Oral administration of Escherichia coli Nissle 1917 prevents allergen-induced dermatitis in mice. Exp Dermatol 20(10):805–809.  https://doi.org/10.1111/j.1600-0625.2011.01326.x CrossRefPubMedGoogle Scholar
  64. Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10(3):e0119058CrossRefGoogle Scholar
  65. Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA (2016) Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front Microbiol 7(494).  https://doi.org/10.3389/fmicb.2016.00494
  66. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174.  https://doi.org/10.3390/md13031133 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N (2014) Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran J Pharm Res 13(3):843Google Scholar
  68. Zárate G, Nader-Macias ME (2006) Viability and biological properties of probiotic vaginal lactobacilli after lyophilization and refrigerated storage into gelatin capsules. Process Biochem 41(8):1779–1785CrossRefGoogle Scholar
  69. Zhang Y, Feustel PJ, Kimelberg HK (2006) Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res 1094(1):200–206CrossRefGoogle Scholar
  70. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9(3):804–816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Asmaa Mawad
    • 1
    • 2
  • Yosra A. Helmy
    • 1
    • 3
  • Abdel-Gawad Shalkami
    • 1
    • 4
  • Dipak Kathayat
    • 1
  • Gireesh Rajashekara
    • 1
  1. 1.Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  2. 2.Botany and Microbiology Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
  4. 4.Pharmacology and Toxicology Department, Faculty of PharmacyAl-Azhar University, Assiut, BranchAssiutEgypt

Personalised recommendations