Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 23, pp 9973–9989 | Cite as

Identification and typing of fish pathogenic species of the genus Tenacibaculum

  • Clara Fernández-Álvarez
  • Ysabel Santos
Mini-Review
  • 225 Downloads

Abstract

Tenacibaculosis is a major bacterial disease that causes severe fish outbreaks and losses and limits the culture of a variety of commercially valuable anadromous and marine fish species in Europe, America, Asia and Oceania. Fish affected by tenacibaculosis have external lesions and necrosis that affect different areas of the body surface, reducing their commercial value. Several species of Tenacibaculum have been identified as the causal agent of tenacibaculosis in fish, including Tenacibaculum maritimum, Tenacibaculum soleae, Tenacibaculum discolor, Tenacibaculum gallaicum, Tenacibaculum dicentrarchi and “Tenacibaculum finnmarkense” (quotations marks denote species that have not been validly published). Diagnosis of tenacibaculosis is usually based on culture-dependent detection and identification techniques which are time-consuming and do not allow to differentiate closely related species. The development of reliable techniques for studying the relationships between members of the genus Tenacibaculum and for distinguishing fish-pathogenic species of Tenacibaculum genus is, therefore, a key step in understanding the diversity and incidence of tenacibaculosis in global aquaculture, designing effective prevention strategies and early implementation of infection control measures. In this review, recent advances in molecular, serological, proteomic and chemotaxonomic techniques developed for the identification and differentiation of Tenacibaculum species, as well as for the analysis of their genetic and epidemiological relationships are discussed. Key features of current diagnostic methods likely to facilitate control and prevention of tenacibaculosis and to avoid the spread of its aetiological agents are also outlined.

Keywords

Chemotaxonomic typing Diagnosis Genotyping Molecular typing Proteomic typing Serotyping Tenacibaculum sp. 

Notes

Acknowledgements

This work was partially funded by the proof of concept “Acelerador de transferencia” 2017 from the Banco de Santander and Universidad de Santiago de Compostela. Clara Fernández-Álvarez is grateful to Banco de Santander and Universidad de Santiago de Compostela for a research contract.

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Authors 1 and 2 declare that they have no conflict of interest.

References

  1. Alsina M, Blanch AR (1993) First isolation of Flexibacter maritimus from cultivated turbot (Scophthalmus maximus). Bull Eur Assoc Fish Pathol 13(5):157–160Google Scholar
  2. Apablaza P, Frisch K, Brevik ØJ, Småge SB, Vallestad C, Duesund H, Mendoza J, Nylund A (2017) Primary isolation and characterization of Tenacibaculum maritimum from Chilean Atlantic salmon mortalities associated with a Pseudochattonella spp. algal bloom. J Aquat Anim Health 29(3):143–149PubMedGoogle Scholar
  3. Arenas J, Mata M, Santos Y (2003) Evaluation of an enzyme-linked immunosorbent assay for serological typing of Tenacibaculum maritimum. European Association of Fish Pathologist 11th International Conference of ‘Disease of Fish and Shell Fish’Google Scholar
  4. Assis GB, Pereira FL, Zegarra AU, Tavares GC, Leal CA, Figueiredo HC (2017) Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Front Microbiol 8:1–12Google Scholar
  5. Austin B, Austin DA (2016) Bacterial fish pathogens, 6th edn. Springer, ChichesterGoogle Scholar
  6. Avendaño-Herrera R, Magariños B, López-Romalde S, Romalde JL, Toranzo AE (2004a) Phenotypic characterization and description of two major O-serotypes in Tenacibaculum maritimum strains from marine fish. Dis Aquat Org 58:1–8PubMedGoogle Scholar
  7. Avendaño-Herrera R, Núñez S, Magariños B, Toranzo AE (2004b) A non-destructive method for rapid detection of Tenacibaculum maritimum in farmed fish using nested PCR amplification. Bull Eur Assoc Fish Pathol 24(6):280–286Google Scholar
  8. Avendaño-Herrera R, Magariños B, Toranzo AE, Beaz R, Romalde JL (2004c) Species-specific polymerase chain reaction primer sets for the diagnosis of Tenacibaculum maritimum infection. Dis Aquat Org 62:75–83PubMedGoogle Scholar
  9. Avendaño-Herrera R, Rodríguez J, Magariños B, Romalde JL, Toranzo AE (2004d) Intraspecific diversity of the marine fish pathogen Tenacibaculum maritimum as determined by randomly amplified polymorphic DNA-PCR. J Appl Microbiol 96(4):871–877PubMedGoogle Scholar
  10. Avendaño-Herrera R, Irgang R, Núñez S, Romalde JL, Toranzo AE (2005a) Recommendation of an appropriate medium for in vitro drug susceptibility testing of the fish pathogen Tenacibaculum maritimum. Antimicrob Agents Chemother 49:82–87PubMedPubMedCentralGoogle Scholar
  11. Avendaño-Herrera R, Magariños B, Moriñigo MA, Romalde JL, Toranzo AE (2005b) A novel O-serotype in Tenacibaculum maritimum strains isolated from cultured sole (Solea senegalensis). Bull Eur Assoc Fish Pathol 25(2):70–74Google Scholar
  12. Avendaño-Herrera R, Toranzo AE, Magariños B (2006) Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Org 71:255–266PubMedGoogle Scholar
  13. Avendaño-Herrera R, Nuñez S, Barja JL, Toranzo AE (2008) Evolution of drug resistance and minimum inhibitory concentration to enrofloxacin in Tenacibaculum maritimum strains isolated in fish farms. Aquac Int 16(1):1–11Google Scholar
  14. Avendaño-Herrera R, Irgang R, Sandoval C, Moreno-Lira P, Houel A, Duchaud E, Poblete-Morales M, Nicolas P, Ilardi P (2016) Isolation, characterization and virulence potential of Tenacibaculum dicentrarchi in salmonid cultures in Chile. Transbound Emerg Dis 63(2):121–126PubMedGoogle Scholar
  15. Avendaño-Herrera R, Irgang R, Tapia-Cammas D (2017) PCR procedure for detecting the fish pathogen Tenacibaculum dicentrarchi. J Fish Dis 41(4):715–719PubMedGoogle Scholar
  16. Bader JA, Shotts EB (1998) Identification of Flavobacterium and Flexibacter species by species-specific polymerase chain reaction primers to the 16S ribosomal RNA gene. J Aquat Anim Health 10(4):311–319Google Scholar
  17. Baxa DV, Kawai K, Kusuda R (1986) Characteristics of gliding bacteria isolated from diseased cultured flounder, Paralichthys olivaceous. Fish Pathol 21(4):251–258Google Scholar
  18. Baxa DV, Kawai K, Kusuda R (1988) Detection of Flexibacter maritimus by fluorescent antibody technique in experimentally infected black sea bream fry. Fish Pathol 23(1):29–32Google Scholar
  19. Bernardet JF, Campbell AC, Buswell JA (1990) Flexibacter maritimus is the agent of “black patch necrosis” in Dover sole in Scotland. Dis Aquat Org 8:233–237Google Scholar
  20. Bernardet JF, Kerouault B, Michel C (1994) Comparative study on Flexibacter maritimus strains isolated from farmed sea bass (Dicentrarchus labrax) in France. Fish Pathol 29(2):105–111Google Scholar
  21. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  22. Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32(21):2951–2965PubMedGoogle Scholar
  23. Bridel S, Olsen AB, Nilsen H, Bernardet JF, Achaz G, Avendaño-Herrera R, Duchaud E (2018) Comparative genomics of Tenacibaculum dicentrarchi and “Tenacibaculum finnmarkense” highlights intricate evolution of fish-pathogenic species. Genome Biol Evol 10(2):452–457PubMedPubMedCentralGoogle Scholar
  24. Buller NB (2014) In: Buller NB (ed) Bacteria and fungi from fish and other aquatic animals: a practical identification manual, 2nd edn. Cabi Publishing, WallingfordGoogle Scholar
  25. Burioli EAV, Varello K, Trancart S, Bozzetta E, Gorla A, Prearo M, Houssin M (2018) First description of a mortality event in adult Pacific oysters in Italy associated with infection by a Tenacibaculum soleae strain. J Fish Dis 41(2):215–221PubMedGoogle Scholar
  26. Castro N, Magariños B, Núñez S, Toranzo AE (2007) Reassessment of the Tenacibaculum maritimum serotypes causing mortalities in cultured marine fish. Bull Eur Assoc Fish Pathol 27(6):229–233Google Scholar
  27. Castro N, Balboa S, Núñez S, Toranzo AE, Magariños B (2014a) First isolation and characterization of Tenacibaculum soleae from sea bass Dicentrarchus labrax. Fish Pathol 49(1):16–22Google Scholar
  28. Castro N, Toranzo AE, Magariños B (2014b) A multiplex PCR for the simultaneous detection of Tenacibaculum maritimum and Edwardsiella tarda in aquaculture. Int Microbiol 17:111–117PubMedGoogle Scholar
  29. Cepeda C (2003) Desarrollo de sistemas eficaces para el cultivo y la identificación de Flavobacterium psychrophilum y Tenacibaculum maritimum. Tesis doctoral, Universidad Santiago de Compostela (Santiago de Compostela)Google Scholar
  30. Cepeda C, Santos Y (2002) First isolation of Flexibacter maritimus from farmed Senegalese sole (Solea senegalensis, Kaup) in Spain. Bull Eur Assoc Fish Pathol 22(6):388–392Google Scholar
  31. Cepeda C, García-Márquez S, Santos Y (2003) Detection of Flexibacter maritimus in fish tissue using nested PCR amplification. J Fish Dis 26(2):65–70PubMedGoogle Scholar
  32. Chen ME, Henry-Ford D, Groff JM (1995) Isolation and characterization of Flexibacter maritimus from marine fishes of California. J Aquat Anim Health 7(4):318–326Google Scholar
  33. Conway GC, Smole SC, Sarracino DA, Arbeit RD, Leopold PE (2001) Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 3(1):103–112PubMedGoogle Scholar
  34. Devesa S, Barja JL, Toranzo AE (1989) Ulcerative skin and fin lesions in reared turbot, Scophthalmus maximus (L). J Fish Dis 12(4):323–333Google Scholar
  35. Edwards U, Rogall T, Bloecker H, Emde M, Boettger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853PubMedPubMedCentralGoogle Scholar
  36. Faílde LD, Bermúdez R, Losada AP, Riaza A, Santos Y, Quiroga MI (2014) Immunohistochemical diagnosis of tenacibaculosis in paraffin-embedded tissues of Senegalese sole Solea senegalensis Kaup, 1858. J Fish Dis 37(11):959–968PubMedGoogle Scholar
  37. Farto R, Montes M, Pérez MJ, Nieto TP, Larsen JL, Pedersen K (1999) Characterization by numerical taxonomy and ribotyping of Vibrio splendidus biovar I and Vibrio scophthalmi strains associated with turbot cultures. J Appl Microbiol 86(5):796–804PubMedGoogle Scholar
  38. Fernández-Álvarez C, Gijón D, Álvarez M, Santos Y (2016) First isolation of Aeromonas salmonicida subsp. salmonicida from diseased sea bass, Dicentrarchus labrax (L.), cultured in Spain. Aquac Rep 4:36–41Google Scholar
  39. Fernández-Álvarez C, Torres-Corral Y, Saltos-Rosero N, Santos Y (2017) MALDI-TOF mass spectrometry for rapid differentiation of Tenacibaculum species pathogenic for fish. Appl Microbiol Biotechnol 101(13):5377–5390PubMedGoogle Scholar
  40. Fernández-Álvarez C, Torres-Corral Y, Santos Y (2018a) Comparison of serological and molecular typing methods for epidemiological investigation of Tenacibaculum species pathogenic for fish. Appl Microbiol Biotechnol 102(6):2779–2789PubMedGoogle Scholar
  41. Fernández-Álvarez C, Torres-Corral Y, Santos Y (2018b) Use of ribosomal proteins as biomarkers for identification of Flavobacterium psychrophilum by MALDI-TOF mass spectrometry. J Proteome 170:59–69PubMedGoogle Scholar
  42. Fernández-Álvarez C, González SF, Santos Y (2019) Quantitative PCR coupled with melting curve analysis for rapid detection and quantification of Tenacibaculum maritimum in fish and environmental samples. Aquaculture 498(1):289–296Google Scholar
  43. Florio D, Gridelli S, Fioravanti ML, Zanoni RG (2016) First isolation of Tenacibaculum maritimum in a captive sand tiger shark (Carcharias taurus). J Zoo Wildl Med 47(1):351–353PubMedGoogle Scholar
  44. Fringuelli E, Savage PD, Gordon A, Baxter EJ, Rodger HD, Graham DA (2012) Development of a quantitative real-time PCR for the detection of Tenacibaculum maritimum and its application to field samples. J Fish Dis 35(8):579–590PubMedGoogle Scholar
  45. Frisch K, Småge SB, Brevik ØJ, Duesund H, Nylund A (2018) Genotyping of Tenacibaculum maritimum isolates from farmed Atlantic salmon in Western Canada. J Fish Dis 41(1):131–137PubMedGoogle Scholar
  46. García-González P, García-Lamas N, Fuentes Edfuf C, Santos Y (2011) Development of a PCR method for the specific identification of the marine fish pathogen Tenacibaculum soleae. Aquaculture 319:1–4Google Scholar
  47. González SF, Santos Y (2009) Serological methods for the detection of pathogenic bacteria in aquaculture: present status and prospects. In: Fisheries, aquaculture and biotechnology. Agrobios, India, pp 131–144Google Scholar
  48. González SF, Osorio CR, Santos Y (2004) Evaluation of the AQUARAPID-Va, AQUAEIA-Va and dot-blot assays for the detection of Vibrio anguillarum in fish tissues. J Fish Dis 27:617–621PubMedGoogle Scholar
  49. Grothusen H, Castillo A, Henríquez P, Navas E, Bohle H, Araya C, Bustamante F, Bustos P, Mancilla M (2016) First complete genome sequence of Tenacibaculum dicentrarchi, an emerging bacterial pathogen of salmonids. Genome Announc 4(1):e01756–e01715.  https://doi.org/10.1128/genomeA.01756-15 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Habib C, Houel A, Lunazzi A, Bernardet JF, Olsen AB, Nilsen H, Toranzo AE, Castro N, Nicolas P, Duchaud E (2014) Multilocus sequence analysis of the marine bacterial genus Tenacibaculum suggests parallel evolution of fish pathogenicity and endemic colonization of aquaculture systems. Appl Environ Microbiol 80(17):5503–5514PubMedPubMedCentralGoogle Scholar
  51. Handlinger J, Soltani M, Percival S (1997) The pathology of Flexibacter maritimus in aquaculture species in Tasmania, Australia. J Fish Dis 20(3):159–168Google Scholar
  52. Hansen GH, Bergh Ø, Michaelsen J, Knappskog D (1992) Flexibacter ovolyticus sp. nov. a pathogen of eggs and larvae of Atlantic halibut, Hipoglossus hipoglossus L. Int J Syst Bacteriol 42:451–458PubMedGoogle Scholar
  53. Irgang R, González-Luna R, Gutiérrez J, Poblete-Morales M, Rojas V, Tapia-Cammas D, Avendaño-Herrera R (2017) First identification and characterization of Tenacibaculum dicentrarchi isolated from Chilean red conger eel (Genypterus chilensis, Guichenot 1848). J Fish Dis 40(12):1915–1920PubMedGoogle Scholar
  54. Jaramillo D, Peeler EJ, Laurin E, Gardner IA, Whittington RJ (2017) Serology in finfish for diagnosis, surveillance, and research: a systematic review. J Aquat Anim Health 29:1–14PubMedGoogle Scholar
  55. Kim A, Nguyen TL, Kim DH (2017) Modern methods of diagnosis. In: Austin B, Newaj-Fyzul A (eds) Diagnosis and control of diseases of fish and shellfish. John Wiley & Sons Ltd, Hoboken, pp 109–145Google Scholar
  56. Kolygas MN, Gourzioti E, Vatsos IN, Athanassopoulou F (2012) Identification of Tenacibaculum maritimum strains from marine farmed fish in Greece. Vet Rec 170:623PubMedGoogle Scholar
  57. Lin T, Lin L, Zhang F (2014) Review on molecular typing methods of pathogens. Open J Med Microbiol 4:147–152Google Scholar
  58. López JR, Núñez S, Magariños B, Castro N, Navas JI, De La Herran R, Toranzo AE (2009) First isolation of Tenacibaculum maritimum from wedge sole, Dicologoglossa cuneata (Moreau). J Fish Dis 32(7):603–610PubMedGoogle Scholar
  59. López JR, Piñeiro-Vidal M, García-Lamas N, De La Herran R, Navas JI, Hachero-Cruzado I, Santos Y (2010) First isolation of Tenacibaculum soleae from diseased cultured wedge sole, Dicologoglossa cuneata (Moreau), and brill, Scophthalmus rhombus (L.). J Fish Dis 33(3):273–278PubMedGoogle Scholar
  60. López JR, Hamman-Khalifa AM, Navas JI, De la Herran R (2011) Characterization of ISR region and development of a PCR assay for rapid detection of the fish pathogen Tenacibaculum soleae. FEMS Microbiol Lett 324(2):181–188PubMedGoogle Scholar
  61. López JR, Navas JI, Thanantong N, de la Herran R, Sparagano OAE (2012) Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture 324-325:33–38Google Scholar
  62. López-Cortés XA, Nachtigall FM, Olate VR, Araya M, Oyanedel S, Diaz V, Jakob E, Ríos-Momberg M, Santos LS (2017) Fast detection of pathogens in salmon farming industry. Aquaculture 470:17–24Google Scholar
  63. Lujan KM, Eisen JA, Coil DA (2016) Draft genome sequence of Tenacibaculum soleae UCD-KL19. Genome Announc 4(5):e01120–e01116.  https://doi.org/10.1128/genomeA.01120-16 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Magariños B, Osorio CR, Toranzo AE, Romalde JL (1997) Applicability of ribotyping for intraspecific classification and epidemiological studies of Photobacterium damsela subsp. piscicida. Syst Appl Microbiol 20(4):634–639Google Scholar
  65. Masumura K, Wakabayashi H (1977) An outbreak of gliding bacterial disease in hatchery-born red seabream (Pagrus major) and gilthead (Acanthopagrus schlegeli) fry in Hiroshima. Fish Pathol 12(3):171–177Google Scholar
  66. Mata M, Skarmeta A, Santos Y (2002) A proposed serotyping system for Flavobacterium psychrophilum. Lett Appl Microbiol 35(2):166–170PubMedGoogle Scholar
  67. McVicar AH, White PG (1979) Fin and skin necrosis of cultivated Dover sole Solea solea (L). J Fish Dis 2(6):557–562Google Scholar
  68. McVicar AH, White PG (1982) The prevention and cure of an infectious disease in cultivated juvenile Dover sole, Solea solea (L.). Aquaculture 26(3–4):213–222Google Scholar
  69. National Committee for Clinical Laboratory Standards (2003) Methods for antimicrobial disk susceptibility testing of bacteria isolated from aquatic animals; a report. NCCLS document M42-R. National Committee for Clinical Laboratory Standards, Wayne, PAGoogle Scholar
  70. Olsen AB, Gulla S, Steinum T, Colquhoun DJ, Nilsen HK, Duchaud E (2017) Multilocus sequence analysis reveals extensive genetic variety within Tenacibaculum spp. associated with ulcers in sea-farmed fish in Norway. Vet Microbiol 205:39–45PubMedGoogle Scholar
  71. Ostland VE, LaTrace C, Morrison D, Ferguson HW (1999) Flexibacter maritimus associated with a bacterial stomatitis in Atlantic salmon smolts reared in net-pens in British Columbia. J Aquat Anim Health 11(1):35–44Google Scholar
  72. Pazos F (1997) Flexibacter maritimus: estudio fenotípico, inmunológico y molecular. Tesis doctoral, Universidad Santiago de Compostela (Santiago de Compostela)Google Scholar
  73. Pazos F, Santos Y, Núñez S, Toranzo AE (1993) Increasing occurrence of Flexibacter maritimus in the marine aquaculture of Spain. FHS/AFS Newsl 21:1–2Google Scholar
  74. Pazos F, Santos Y, Macias AR, Núñez S, Toranzo AE (1996) Evaluation of media for the successful culture of Flexibacter maritimus. J Fish Dis 19(2):193–197Google Scholar
  75. Pépin JF, Emery E (1993) Marine Cytophaga-like bacteria (CLB) isolated from diseased reared sea bass (Dicentrarchus labrax L.) from French Mediterranean coast. Bull Eur Assoc Fish Pathol 13(5):165–167Google Scholar
  76. Pérez- Pascual D, Lunazzi A, Magdelenat G, Rouy Z, Roulet A, López-Roques C, Larocque R, Barbeyron T, Gobet A, Michel G, Bernardet JF, Duchaud E (2017) The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms. Front Microbiol 16(8):1–11Google Scholar
  77. Pérez-Sancho M, Vela AI, Awad M, Kostrzewa M, Dominguez L, Fernández-Garayzábal JF (2016) Differentiation of Photobacterium damselae subspecies using matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in fish isolates. Aquaculture 464:159–164Google Scholar
  78. Pérez-Sancho M, Vela AI, Wiklund T, Kostrzewa M, Domínguez L, Fernández-Garayzábal JF (2017) Differentiation of Flavobacterium psychrophilum from Flavobacterium psychrophilum-like species by MALDI-TOF mass spectrometry. Res Vet Sci 115:345–352PubMedGoogle Scholar
  79. Piñeiro Vidal M, Ruiz de Ocenda M, Santos Y (2009) Susceptibilidad antimicrobiana de los patógenos de peces Tenacibaculum discolor, T gallaicum y T soleae Sesión de Sanidad Animal, XII Congreso Nacional de Acuicultura pp 314–315Google Scholar
  80. Piñeiro-Vidal M (2008) Descripción de tres nuevas especies del Género Tenacibaculum causantes de tenacibaculosis: aspectos taxonómicos y patogenicidad. PhD thesis. Universidad de Santiago de Compostela, Santiago de Compostela, SpainGoogle Scholar
  81. Piñeiro-Vidal M, Riaza A, Santos Y (2006) Serological typing of Tenacibaculum sp. isolated from diseased turbot and sole cultured in Spain. Proceedings of 3rd International Congress on Aquaculture, Fisheries Technology and Environmental Management (AquaMedit). pp 1–10Google Scholar
  82. Piñeiro-Vidal M, Centeno-Sestelo G, Riaza A, Santos Y (2007) Isolation of pathogenic Tenacibaculum maritimum-related organisms from diseased turbot and sole cultured in the northwest of Spain. Bull Eur Assoc Fish Pathol 27(1):29–35Google Scholar
  83. Piñeiro-Vidal M, Riaza A, Santos Y (2008a) Tenacibaculum discolor sp. nov. and Tenacibaculum gallaicum sp. nov., isolated from sole (Solea senegalensis) and turbot (Psetta maxima) culture systems. Int J Syst Evol Microbiol 58(1):21–25PubMedGoogle Scholar
  84. Piñeiro-Vidal M, Carballas CG, Gómez-Barreiro O, Riaza A, Santos Y (2008b) Tenacibaculum soleae sp. nov., isolated from diseased sole (Solea senegalensis Kaup). Int J Syst Evol Microbiol 58(4):881–885PubMedGoogle Scholar
  85. Piñeiro-Vidal M, Pazos F, Santos Y (2008c) Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species. Lett Appl Microbiol 46(5):548–554PubMedGoogle Scholar
  86. Piñeiro-Vidal M, Gijón D, Zarza C, Santos Y (2012) Tenacibaculum dicentrarchi sp. nov., a novel marine bacteria of the family Flavobacteriaceae isolated from European sea bass (Dicentrarchus labrax, L.). Int J Syst Evol Microbiol 62(2):425–429PubMedGoogle Scholar
  87. Powell M, Carson J, Van-Gelderen R (2004) Experimental induction of gill disease in Atlantic salmon Salmo salar smolts with Tenacibaculum maritimum. Dis Aquat Org 61(3):179–185PubMedGoogle Scholar
  88. Rahman T, Suga K, Kanai K, Sugihara Y (2014) Biological and serological characterization of a non-gliding strain of Tenacibaculum maritimum isolated from a diseased puffer fish Takifugu rubripes. Jpn Soc Fish Pathol 49(3):121–129Google Scholar
  89. Rochat T, Fujiwara-Nagata E, Calvez S, Dalsgaard I, Madsen L, Calteau A, Lunazzi A, Nicolas P, Wiklund T, Bernardet JF, Duchaud E (2017) Genomic characterization of Flavobacterium psychrophilum serotypes and development of a multiplex PCR-based serotyping scheme. Front Microbiol 8:1–9Google Scholar
  90. Sakai T, Iida T, Osatomi K, Kanai K (2007) Detection of type 1 fimbrial genes in fish pathogenic and non-pathogenic Edwardsiella tarda strains by PCR. Fish Pathol 42(2):115–117Google Scholar
  91. Salati F, Cubadda C, Viale I, Kusuda R (2005) Immune response of sea bass Dicentrarchus labrax to Tenacibaculum maritimum antigens. Fish Sci 71(3):563–567Google Scholar
  92. Santos Y, Pazos F, Barja JL (1999) Flexibacter maritimus, causal agent of flexibacteriosis in marine fish. In: ICES identification leaflets for diseases and parasites of fish and shellfish N° 55, International Council for the Exploration of the Sea. ICES, Denmark, pp 1–6Google Scholar
  93. Shoemaker CA, Arias CR, Klesius PH, Welker TL (2005) Technique for identifying Flavobacterium columnare using whole-cell fatty acid profiles. J Aquat Anim Health 17(3):267–274Google Scholar
  94. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:1–16Google Scholar
  95. Småge SB, Brevik ØJ, Duesund H, Ottem KF, Watanabe K, Nylund A (2016) Tenacibaculum finnmarkense sp. nov., a fish pathogenic bacterium of the family Flavobacteriaceae isolated from Atlantic salmon. Antonie Van Leeuwenhoek 109(2):273–285PubMedGoogle Scholar
  96. Småge SB, Brevik ØJ, Frisch K, Watanabe K, Duesund H, Nylund A (2017) Concurrent jellyfish blooms and tenacibaculosis outbreaks in northern Norwegian Atlantic salmon (Salmo salar) farms. PLoS One 12(11):e0187476PubMedPubMedCentralGoogle Scholar
  97. Småge SB, Frisch K, Vold V, Duesund H, Brevik ØJ, Olsen RH, Sjaatil ST, Klevan A, Brudeseth B, Watanabe K, Nylund A (2018) Induction of tenacibaculosis in Atlantic salmon smolts using Tenacibaculum finnmankense and the evaluation of a whole cell inactivated vaccine. Aquaculture 495:858–864Google Scholar
  98. Soltani M, Burke CM (1994) Responses of fish-pathogenic Cytophaga/Flexibacter-like bacteria (CFLB) to environmental conditions. Bull Eur Assoc Fish Pathol 14(6):185–187Google Scholar
  99. Soltani M, Munday BL, Burke CM (1996) The relative susceptibility of fish to infections by Flexibacter columnaris and Flexibacter maritimus. Aquaculture 140(3):259–264Google Scholar
  100. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652Google Scholar
  101. Teramoto M, Zhai Z, Komatsu A, Shibayama K, Suzuki M (2016) Genome sequence of the psychrophilic bacterium Tenacibaculum ovolyticum strain da5A-8 isolated from deep seawater. Genome Announc 4(3):e00644–e00616PubMedPubMedCentralGoogle Scholar
  102. Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246(1–4):37–61Google Scholar
  103. Torres-Corral Y, Fernández-Álvarez C, Santos Y (2019) Proteomic and molecular fingerprinting for identification and tracking of fish pathogenic Streptococcus. Aquaculture 498:322–334Google Scholar
  104. Toyama T, Kita-Tsukamoto K, Wakabayashi H (1996) Identification of Flexibacter maritimus, Flavobacterium branchiophilum and Cytophaga columnaris by PCR targeted 16S ribosomal DNA. Fish Pathol 31(1):25–31Google Scholar
  105. Tu C, Suga K, Kanai K (2015) A multiplex PCR assay for differentiation of Streptococcus parauberis serotypes. Fish Pathol 50(4):213–215Google Scholar
  106. Van Gelderen R, Carson J, Gudkovs N, Nowak B (2010) Physical characterisation of Tenacibaculum maritimum for vaccine development. J Appl Microbiol 109(5):1668–1676PubMedGoogle Scholar
  107. Vold V (2014) Challenge experiment with field isolates of Tenacibaculum spp. isolated from moribound Atlantic salmon (Salmo salar L). Bergen: Master thesis. University of BergenGoogle Scholar
  108. Wakabayashi H, Hikida M, Masumura K (1984) Flexibacter infection in cultured marine fish in Japan. Helgoländer Meeresun 37(1–4):587–593Google Scholar
  109. Wakabayashi H, Hikida M, Masumura K (1986) Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int J Syst Bacteriol 36:396–398Google Scholar
  110. Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR (2004) Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl Environ Microbiol 70(7):4216–4221PubMedPubMedCentralGoogle Scholar
  111. Weisburg WG, Barns S, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedPubMedCentralGoogle Scholar
  112. Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11(15):3143–3152PubMedGoogle Scholar
  113. Wilson T, Carson J (2003) Development of sensitive, high throughput one-tube RT-PCR-enzyme hybridization assay to detect selected bacterial fish pathogens. Dis Aquat Org 54:127–134PubMedGoogle Scholar
  114. Wilson T, Carson J, Bowman J (2002) Optimization of one tube PCR-ELISA to detect femtogram amounts of genomic DNA. J Microbiol Methods 51(2):163–170PubMedGoogle Scholar
  115. Wolska K, Szweda P (2012) Genotyping techniques for determining the diversity of microorganisms. In: Caliskan M (ed) Genetic diversity in microorganisms. InTech, Rijeka, pp 53–94Google Scholar
  116. Yardimci R, Timur G (2015) Isolation and identification of Tenacibaculum maritimum, the causative agent of tenacibaculosis in farmed sea bass (Dicentrarchus labrax) on the Aegean Sea coast of Turkey. IJA-Bamidgeh 67:1–10Google Scholar
  117. Yardimci RE, Timur G (2016) Antigenic characterisation of Tenacibaculum maritimum isolates from sea bass (Dicentrarchus labrax, L.) farmed on the Aegean Sea coasts of Turkey. J Aquac Res Dev 7(2):1–4Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Microbiología y Parasitología, Edificio CIBUS–Facultad de Biología and Instituto de Investigación y Análisis AlimentariosUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations