Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9121–9129 | Cite as

Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies

  • Yang Wang
  • Yuxin Wang
  • Liyun Sun
  • Daniel Grenier
  • Li Yi
Mini-Review
  • 265 Downloads

Abstract

Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.

Keywords

Streptococcus suis Biofilms Regulatory mechaniss Drug resistance mechanisms Disinfection strategies 

Notes

Funding

This study was funded by the National Key Research and Development Program of China (2018YFD0500100), the National Natural Science Foundation of China (31772761, 31540095), the Science and Technology Development Project of Henan Province (182300410047, 162300410067), and the China Scholarship Council (CSC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Acker HV, Dijck PV, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22(6):326–333.  https://doi.org/10.1016/j.tim.2014.02.001 CrossRefPubMedGoogle Scholar
  2. Bazire A, Shioya K, Soumsoutéra E, Bouffartigues E, Ryder C, Guentasdombrowsky L, Hémery G, Linossier I, Chevalier S, Wozniak DJ (2010) The sigma factor Algu plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol 192(12):3001–3010.  https://doi.org/10.1128/JB.01633-09 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonifait L, Grignon L, Grenier D (2008) Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol 74(15):4969–4972.  https://doi.org/10.1128/AEM.00558-08 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bonifait L, Gottschalk M, Grenier D (2010) Cell surface characteristics of nontypeable isolates of Streptococcus suis. FEMS Microbiol Lett 311(2):160–166.  https://doi.org/10.1128/AEM.00558-08 CrossRefPubMedGoogle Scholar
  5. Choi KS, Veeraragouda Y, Cho KM, Lee SO, Jo GR, Cho K, Lee K (2007) Effect of Gacs and Gac a mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas Sp. Kl28. J Microbiol 45(6):492–498PubMedGoogle Scholar
  6. Chuzeville S, Auger JP, Dumesnil A, Roy D, Lacouture S, Fittipaldi N, Grenier D, Gottschalk M (2017) Serotype-specific role of antigen I/Ii in the initial steps of the pathogenesis of the infection caused by Streptococcus suis. Vet Res 48(1):39.  https://doi.org/10.1186/s13567-017-0443-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N (2015) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev 85:7–23.  https://doi.org/10.1016/j.addr.2014.11.017 CrossRefPubMedGoogle Scholar
  8. Coenye T (2010) Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 5(7):1087–1099.  https://doi.org/10.2217/fmb.10.68 CrossRefPubMedGoogle Scholar
  9. Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB, Han Q, Liu X, Chen XY, He Z (2017) Sub-minimum inhibitory concentrations of rhubarb water extracts inhibit Streptococcus suis biofilm formation. Front Pharmacol 8:425.  https://doi.org/10.3389/fphar.2017.00425 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ding W, Sun J, Lian H, Xu C, Liu X, Zheng S, Zhang D, Han X, Liu Y, Chen X (2018) The influence of shuttle-shape Emodin nanoparticles on the Streptococcus suis biofilm. Front Pharmacol 9:227.  https://doi.org/10.3389/fphar.2018.00227 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193.  https://doi.org/10.1128/CMR.15.2.167-193.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Du B, Ji W, An H, Shi Y, Huang Q, Cheng Y, Fu Q, Wang H, Yan Y, Sun J (2014) Functional analysis of C-Di-amp phosphodiesterase, Gdpp, in Streptococcus suis serotype 2. Microbiol Res 169(9–10):749–758.  https://doi.org/10.1016/j.micres.2014.01.002 CrossRefPubMedGoogle Scholar
  13. Duguid IG, Evans E, Brown MR, Gilbert P (1992) Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. J Antimicrob Chemother 30(6):803–810.  https://doi.org/10.1093/jac/30.6.803 CrossRefPubMedGoogle Scholar
  14. Espinosa I, Báez M, Lobo E, Martínez S, Gottschalk M (2016) Antimicrobial activity of penicillin G and N-acetylcystein on planktonic and sessile cells of Streptococcus suis. Polish J Microbiol 65(1):105–109CrossRefGoogle Scholar
  15. Evans DJ, Allison DG, Brown MR, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27(2):177–184.  https://doi.org/10.1093/jac/27.2.177 CrossRefPubMedGoogle Scholar
  16. Fittipaldi N, Segura M, Grenier D, Gottschalk M (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7(2):259–279.  https://doi.org/10.2217/fmb.11.149 CrossRefPubMedGoogle Scholar
  17. Gao LF, Chen JQ, Sheng ZL, Liu XL, Wei SG, Zhang CL, Fang L, Li YH (2015) Screening of the effective parts of Syringa oblate Lindl leaf to intervene the in vitro biofilm formation of Streptococcus suis. Heilongjiang Anim Sci Vet Med (13):189–191Google Scholar
  18. Ghadam P, Akhlaghi F, Abdi Ali A (2017) One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm. Iranian J Basic Med Sci 20(5):467–473.  https://doi.org/10.22038/IJBMS.2017.8668 CrossRefGoogle Scholar
  19. Gottschalk M, Xu J, Calzas C, Segura M (2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5(3):371–391.  https://doi.org/10.2217/fmb.10.2 CrossRefPubMedGoogle Scholar
  20. Goyettedesjardins G, Auger JP, Xu J, Segura M, Gottschalk M (2014) Streptococcus suis, an important pig pathogen and emerging zoonoticagent—an update on the worldwide distribution based on serotyping and Sequence typing. Emerg Microb Infect 3(6):e45.  https://doi.org/10.1038/emi.2014.45 CrossRefGoogle Scholar
  21. Grenier D, Grignon L, Gottschalk M (2009) Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Vet J 179(2):292–295.  https://doi.org/10.1016/j.tvjl.2007.09.005 CrossRefPubMedGoogle Scholar
  22. Guo D, Wang L, Lu C (2012) In vitro biofilm forming potential of Streptococcus suis isolated from human and swine in China. Braz J Microbiol 43(3):993–1004.  https://doi.org/10.1590/S1517-838220120003000021 CrossRefGoogle Scholar
  23. Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301.  https://doi.org/10.1093/femsre/fux010 CrossRefPubMedGoogle Scholar
  24. Han X, Lei L, Fan G, Zhang Y, Da X, Zuo J, Wang S, Wang X, Tian M, Chan D (2015) Riemerella anatipestifer Lacks Luxs , but can uptake exogenous autoinducer-2 to regulate biofilm formation. Res Microbiol 166(6):486–493.  https://doi.org/10.1016/j.resmic.2015.06.004 CrossRefPubMedGoogle Scholar
  25. Hao H, Hui W, Liu P, Lv Q, Zeng X, Jiang H, Wang Y, Zheng X, Zheng Y, Li J (2013) Correction: effect of licochalcone a on growth and properties of Streptococcus suis. PLoS One 8(7):e67728.  https://doi.org/10.1371/annotation/59a7568c-915d-4d9c-b912-f93af72acdcb CrossRefPubMedPubMedCentralGoogle Scholar
  26. Henke JM, Bassler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186(12):3794–3805.  https://doi.org/10.1128/JB.186.12.3794-3805.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huong VTL, Thanh LV, Phu VD, Trinh DT, Inui K, Tung N, Oanh NTK, Trung NV, Hoa NT, Bryant JE (2016) Temporal and spatial association of Streptococcus suis infection in humans and porcine reproductive and respiratory syndrome outbreaks in pigs in northern Vietnam. Epidemiol Infect 144(1):35–44.  https://doi.org/10.1017/S0950268815000990 CrossRefPubMedGoogle Scholar
  28. Jã¸Rgensen MG, Thomason MK, Havelund J, Valentin-Hansen P, Storz G (2013) Dual function of the Mcas small Rna in controlling biofilm formation. Genes Dev 27(10):1132–1145.  https://doi.org/10.1101/gad.214734.113 CrossRefGoogle Scholar
  29. Ju CX, Gu HW, Lu CP (2012) Characterization and functional analysis of Atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol 194(6):1464–1473.  https://doi.org/10.1128/JB.06231-11 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kadurugamuwa JL, Beveridge TJ (1999) Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145(Pt 8):2051–2060.  https://doi.org/10.1099/13500872-145-8-2051 CrossRefPubMedGoogle Scholar
  31. Khalifa L, Brosh Y, Gelman D, Coppenhagenglazer S, Beyth S, Poradosucohen R, Que YA, Beyth N, Hazan R (2015) Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81(8):2696–2705.  https://doi.org/10.1128/AEM.00096-15 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kumar JS, Umesha S, Prasad KS, Niranjana P (2016) Detection of quorum sensing molecules and biofilm formation in Ralstonia solanacearum. Curr Microbiol 72(3):297–305.  https://doi.org/10.1007/s00284-015-0953-0 CrossRefPubMedGoogle Scholar
  33. Lay ND, Gottesman S (2012) A complex network of small non-coding Rnas regulate motility in Escherichia coli. Mol Microbiol 86(3):524–538.  https://doi.org/10.1111/j.1365-2958.2012.08209.x CrossRefPubMedGoogle Scholar
  34. Lewis K (2012) Persister cells: molecular mechanisms related to antibiotic tolerance. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-28951-4_8 CrossRefGoogle Scholar
  35. Li XZ, Nikaido H (2004) Efflux-mediated drug resistance in bacteria: an update. Drugs 64(2):159–204.  https://doi.org/10.2165/11317030-000000000-00000 CrossRefPubMedGoogle Scholar
  36. Li Y, Yang W, Zhe M, Lin HX, Xu B, Grenier D, Fan HJ, Lu CP (2016) Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic Groel protein involved in biofilm formation. Vet Res 47(1):50.  https://doi.org/10.1186/s13567-016-0334-0 CrossRefGoogle Scholar
  37. Li YH, Zhou YH, Ren YZ, Xu CG, Liu X, Liu B, Chen JQ, Ding WY, Zhao YL, Yang YB (2018) Inhibition of Streptococcus suis adhesion and biofilm formationin vitroby water extracts Ofrhizoma coptidis. Front Pharmacol 9:371.  https://doi.org/10.3389/fphar.2018.00371 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu Y, Cui L, Zhao Z, Gang XU, Wang M, Li YH (2009) Antibacterial activity on different extracts of 50 Chinese herbal medicines against Streptococcus suis in vitro. J Northeast Agric Univ 40(07):90–93Google Scholar
  39. Liu Y, Xu G, Wang M, Li HT, Li YH (2010) Narrowing mutant selection window of Streptococcus suis by combination use of tylosin tartrate and amoxicillin sodium in vitro. Chin J Prev Vet Med 32(1):65–67Google Scholar
  40. Liu B, Han Q, Sheng ZL, Chen JQ, Chen XY, Wei SG, LI YH(2015) Intervention effects of water extract, Berberine hydrochloride and coptisine from Rhizoma coptidis against Streptococcus suis biofilm in vitro. Zhongguo Shou Yi Za Zhi 51(04):16–19Google Scholar
  41. Lowe BA, Miller JD, Neely MN (2007) Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 75(3):1255–1264.  https://doi.org/10.1128/IAI.01484-06 CrossRefPubMedGoogle Scholar
  42. Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H (2017) Streptococcus suis serotype 2 biofilms inhibit the formation of neutrophil extracellular traps. Front Cell Infect Microbiol 7:86.  https://doi.org/10.3389/fcimb.2017.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39.  https://doi.org/10.1016/S0966-842X(00)01913-2 CrossRefPubMedGoogle Scholar
  44. Mei JJ, Wang Y, Li YI, Zhang JK, Cheng XC, Zhang CJ, Zu-Hua YU, Ting-Cai WU (2016) Effect of oct protein on the biofilm formation and the bacterial adherence of Streptococcus suis. Chin Vet Sci 46(02):192–197Google Scholar
  45. Meng X, Shi Y, Ji W, Meng X, Zhang J, Wang H, Lu C, Sun J, Yan Y (2011) Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Appl Environ Microbiol 77(23):8272–8279.  https://doi.org/10.1128/AEM.05151-11 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mika F, Hengge R (2013) Small regulatory Rnas in the control of motility and biofilm formation in E. coli and Salmonella. Int J Mol Sci 14(3):4560–4579.  https://doi.org/10.3390/ijms14034560 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mulcahy H, Charronmazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213.  https://doi.org/10.1371/journal.ppat.1000213 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Neely MN, Pfeifer JD, Caparon M (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 70(7):3904–3914.  https://doi.org/10.1128/IAI.70.7.3904-3914.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Phelps HA, Neely MN (2005) Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish 2(2):87–103.  https://doi.org/10.1089/zeb.2005.2.87 CrossRefPubMedGoogle Scholar
  50. Lu P, Jiao A, Chang P, Hu BR, Fu Q, Sun P, Wei J, Li Y (2015) The influence of some biological characteristics on Streptococcus suis irradiated by carbon ion. J Radiat Res Radiat Process 33(01):53–59Google Scholar
  51. Polkade AV, Mantri SS, Patwekar UJ, Jangid K (2016) Quorum sensing: an under-explored phenomenon in the Phylum actinobacteria. Front Microbiol 7:131.  https://doi.org/10.3389/fmicb.2016.00131 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rice KC, Bayles KW (2008) Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72(1):85–109.  https://doi.org/10.1128/MMBR.00030-07 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rohde H, Frankenberger S, Zähringer U, Mack D (2010) Structure, function and contribution of polysaccharide intercellular adhesin (pia) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 89(1):103–111.  https://doi.org/10.1016/j.ejcb.2009.10.005 CrossRefPubMedGoogle Scholar
  54. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154.  https://doi.org/10.1128/jb.184.4.1140-1154.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Segura M, Calzas C, Grenier D, Gottschalk M (2016) Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 590(21):3772–3799.  https://doi.org/10.1002/1873-3468.12364 CrossRefPubMedGoogle Scholar
  56. Seneviratne CJ, Wang Y, Jin L, Wong SS, Herath TD, Samaranayake LP (2012) Unraveling the resistance of microbial biofilms: has proteomics been helpful? Proteomics 12(4–5):651–665.  https://doi.org/10.1002/pmic.201100356 CrossRefPubMedGoogle Scholar
  57. Shuai W, Yang Y, Zhao Y, Zhao H, Bai J, Chen J, Zhou Y, Chang W, Li Y (2016) Sub-mic tylosin inhibits Streptococcus suis biofilm formation and results in differential protein expression. Frontiers Microbiol 7:384.  https://doi.org/10.3389/fmicb.2016.00384 CrossRefGoogle Scholar
  58. Southey-Pillig CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187(23):8114–8126.  https://doi.org/10.1128/JB.187.23.8114-8126.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stanley NR, Lazazzera BA (2010) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52(4):917–924.  https://doi.org/10.1111/j.1365-2958.2004.04036.x CrossRefGoogle Scholar
  60. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138.  https://doi.org/10.1016/S0140-6736(01)05321-1 CrossRefPubMedGoogle Scholar
  61. Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227.  https://doi.org/10.1016/S0966-842X(01)02012-1 CrossRefPubMedGoogle Scholar
  62. Tanabe S, Bonifait L, Fittipaldi N, Grignon L, Gottschalk M, Grenier D (2010) Pleiotropic effects of polysaccharide capsule loss on selected biological properties of Streptococcus suis. Can J Vet Res 74(1):65–70PubMedPubMedCentralGoogle Scholar
  63. Thomason MK, Fontaine F, De LN, Storz G (2012) A small Rna that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Microbiol Biotechnol 84(1):17–35.  https://doi.org/10.1111/j.1365-2958.2012.07965.x CrossRefGoogle Scholar
  64. Thurnheer T, Gmür R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69(3):1702–1709.  https://doi.org/10.1128/AEM.69.3.1702-1709.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tian LJ, Zhao Q, Song XY, Liu SM, Ma HX (2014) Antibacterial effect of combination of twenty Chinese herbs with ciprofloxacin against Streptococcus suis in vitro. Chin J Vet Drug 48(01):45–48 Google Scholar
  66. Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP (2011) The Luxs-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 79(10):4050–4060.  https://doi.org/10.1128/IAI.05186-11 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Voegele P, Badiola J, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance KE, Mandrekar JN, Patel R (2015) Antibiofilm activity of electrical current in a catheter model. Antimicrob Agents Chemother 60(3):1476–1480.  https://doi.org/10.1128/AAC.01628-15 CrossRefPubMedGoogle Scholar
  68. Vogeleer P, Tremblay YD, Mafu AA, Jacques M, Harel J (2014) Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 5(317):317.  https://doi.org/10.3389/fmicb.2014.00317 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang Y, Zhang W, Wu Z, Lu C (2011a) Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiol Lett 316(1):36–43.  https://doi.org/10.1111/j.1574-6968.2010.02189.x CrossRefPubMedGoogle Scholar
  70. Wang Y, Zhang W, Wu Z, Zhu X, Lu C (2011b) Functional analysis of Luxs in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet Microbiol 152(1):151–160.  https://doi.org/10.1016/j.vetmic.2011.04.029 CrossRefPubMedGoogle Scholar
  71. Wang Y, Yi L, Wu Z, Shao J, Liu G, Fan H, Zhang W, Lu C (2012) Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS One 7(4):e33371.  https://doi.org/10.1371/journal.pone.0033371 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C (2013) Overexpression of Luxs cannot increase autoinducer-2 production, only affect the growth and biofilm formation in Streptococcus suis. Sci World J 2013(2):924276.  https://doi.org/10.1155/2013/924276 CrossRefGoogle Scholar
  73. Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C (2014) Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer-2 signaling. Curr Microbiol 68(5):575–580.  https://doi.org/10.1007/s00284-013-0509-0 CrossRefPubMedGoogle Scholar
  74. Wang Y, Li Y, Wang S, Fan H, Ding C, Mao X, Lu C (2015a) Crystal structure and identification of two key amino acids involved in Ai-2 production and biofilm formation in Streptococcus suis Luxs. PLoS One 10(10):e0138826.  https://doi.org/10.1371/journal.pone.0138826 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang Y, Yi L,Shi MY,Zhang C, Liu YC, Zhang L, Li XK, Yu ZH, Zhang CJ, Cheng XC (2015b) Method for constructing animal model of bacterial biofilm infection in vivo. China Patent No. ZL201,110,427,983.3. China Patent OfficeGoogle Scholar
  76. Wang S, Wang C, Gao L, Cai H, Zhou Y, Yang Y, Xu C, Ding W, Chen J, Muhammad I (2017) Rutin inhibits Streptococcus suis biofilm formation by affecting Cps biosynthesis. Front Pharmacol 8:379.  https://doi.org/10.3389/fphar.2017.00379 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang Y, Wang Y, Sun L, Grenier D, Yi L (2018) The Luxs/Ai-2 system of Streptococcus suis. Appl Microbiol Biotechnol 102:7231–7238.  https://doi.org/10.1007/s00253-018-9170-7 CrossRefGoogle Scholar
  78. Williamson KS, Richards LA, Perezosorio AC, Pitts B, Mcinnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194(8):2062–2073.  https://doi.org/10.1128/JB.00022-12 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wu Z, Zhang W, Lu C (2008) Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 45(3):159–166.  https://doi.org/10.1016/j.micpath.2008.04.009 CrossRefPubMedGoogle Scholar
  80. Wu Z, Zhang W, Lu Y, Lu C (2010) Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb Pathog 48(5):178–187.  https://doi.org/10.1016/j.micpath.2010.02.007 CrossRefPubMedGoogle Scholar
  81. Xiao G, Tang H, Zhang S, Ren H, Dai J, Lai L, Lu C, Yao H, Fan H, Wu Z (2017) Streptococcus suis small Rna Rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Vet Microbiol 199:111–119.  https://doi.org/10.1016/j.vetmic.2016.12.034 CrossRefPubMedGoogle Scholar
  82. Xue T, Ni J, Shang F, Chen X, Zhang M (2015) Autoinducer-2 increases biofilm formation via an Ica- and Bhp-dependent manner in Staphylococcus epidermidis Rp62a. Microb Infect 17(5):345–352.  https://doi.org/10.1016/j.micinf.2015.01.003 CrossRefGoogle Scholar
  83. Yang YB, Chen JQ, Zhao YL, Bai JW, Ding WY, Zhou YH, Chen XY, Liu D, Li YH (2016) Sub-mics of azithromycin decrease biofilm formation of Streptococcus suis and increase capsular polysaccharide content of S. suis. Front Microbiol 7(e89059).  https://doi.org/10.3389/fmicb.2016.01659
  84. Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Fan HJ, Lu CP (2014) Biofilm formation of Streptococcus equi Ssp . zooepidemicus and comparative proteomic analysis of biofilm and planktonic cells. Curr Microbiol 69(3):227–233.  https://doi.org/10.1007/s00284-014-0574-z CrossRefPubMedGoogle Scholar
  85. Zhang H, Ma Z, Li Y, Zheng J, Li Y, Fan H, Lu C (2013) Identification of a novel collagen type I-binding protein from Streptococcus suis serotype 2. Vet J 197(2):406–414.  https://doi.org/10.1016/j.tvjl.2013.01.030 CrossRefPubMedGoogle Scholar
  86. Zhao YL, Zhou YH, Chen JQ, Huang QY, Han Q, Liu B, Cheng GD, Li YH (2015) Quantitative proteomic analysis of sub-mic erythromycin inhibiting biofilm formation of S. suis in vitro. J Proteom 116:1–14.  https://doi.org/10.1016/j.jprot.2014.12.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
  2. 2.Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine DentaireUniversité LavalQuebec CityCanada
  3. 3.College of Life ScienceLuoyang Normal UniversityLuoyangChina

Personalised recommendations