Applied Microbiology and Biotechnology

, Volume 102, Issue 22, pp 9449–9470 | Cite as

Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond

  • Javed IqbalEmail author
  • Banzeer Ahsan Abbasi
  • Riaz Ahmad
  • Tariq MahmoodEmail author
  • Barkat Ali
  • Ali Talha Khalil
  • Sobia Kanwal
  • Sayed Afzal Shah
  • Muhammad Maqsood Alam
  • Hussain Badshah
  • Akhtar Munir


Cancer is a devastating disease and remains a significant cause of mortality and morbidity in both developed and developing countries. Although there are large number of drugs that can be used for the treatment of cancer, the problem is selective and specific killing of cancerous cells without harming the normal cells. There are some biological barriers to potential drug delivery in cancer cells like hepatic, renal, abnormal vasculature, dense extracellular matrix, and high interstitial fluid pressure. The physicochemical characteristics of nanoparticles (NPs) such as size, shape, and surface charge may also have significant effects on tumor penetration. NPs coated with drug can be used to overcome these biological barriers to enhance targeted delivery. This literature survey encompasses the biological barriers to potential drug delivery in cancer cells, elaborate on designing strategies to enhance NPs penetration and distribution inside the tumor interstitium. Scientists are now doing great efforts to design next-generation of nanomedicines (NMs) that need to be better targeted with high specificity and efficacy to kill cancer cells. These challenges need to be overcome through collaborations among academia, pharmaceutical industries, and regulatory agencies to eradicate this global menace. Furthermore, this review article has critically discussed the recent developments, controversies, challenges, emerging concepts, and future perspectives in cancer NMs.


Nanomedicine Cancer Nanoparticles Biological barriers Drugs Challenges 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The article does not contain any studies with animals or human participants performed by any of the authors.


  1. Abbasi BA, Iqbal J, Mahmood T, Khalil AT, Khan B, Kanwal S, Shah, SA, Ahmad, R (2018) Role of dietary phytochemicals in the modulation of miRNA expression: natural swords combating breast cancer. (2018). Asian Pac J Trop Med 11(4):1–10Google Scholar
  2. Arachchige MCM, Reshetnyak YK, Andreev OA (2015) Advanced targeted nanomedicine. J Biotechnol 202:88–97PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arranja AG, Pathak V, Lammers T, Shi Y (2017) Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, Ellston R (2016) Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 8(325):325ra17–325ra17PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRefPubMedCentralGoogle Scholar
  6. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bawa R, Audette GF, Reese BE (2016) Clinical nanomedicine. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  8. Bazile DV (2014) Nanotechnologies in drug delivery—an industrial perspective. J Drug Deliv Sci Technol 24(1):12–21CrossRefGoogle Scholar
  9. Bergamaschi E, Murphy F, Poland CA, Mullins M, Costa AL, McAlea E, Tofail SA (2015) Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(6):839–855PubMedCrossRefPubMedCentralGoogle Scholar
  10. Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bhattarai P, Hameed S, Dai Z (2018) Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 10(12):5393–5423PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bjoornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F (2017) Bridging bio-nano science and cancer nanomedicine. ACS Nano 11(10):9594–9613CrossRefGoogle Scholar
  13. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387CrossRefGoogle Scholar
  14. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med 12(1):81–103CrossRefGoogle Scholar
  15. Brown PD, Patel PR (2015) Nanomedicine: a pharma perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:125–130PubMedPubMedCentralGoogle Scholar
  16. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823PubMedCrossRefPubMedCentralGoogle Scholar
  17. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R (2015) Nanoparticle therapeutics: technologies and methods for overcoming cancer. Eur J Pharm Biopharm 97:140–151PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chang EH, Harford JB, Eaton MA, Boisseau PM, Dube A, Hayeshi R, Lee DS (2015) Nanomedicine: past, present and future—a global perspective. Biochem Biophys Res Commun 468(3):511–517PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen C, Li YF, Qu Y, Chai Z, Zhao Y (2013) Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev 42(21):8266–8303PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen H, Zhang W, Zhu G, Xie J, Chen X (2017) Rethinking cancer nanotheranostics. Nat Rev Mater 2(7):17024PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910PubMedPubMedCentralCrossRefGoogle Scholar
  23. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):7290–2010CrossRefGoogle Scholar
  24. Chowdhury I, Duch MC, Gits CC, Hersam MC, Walker SL (2012) Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. Environ Sci Technol 46(21):11752–11760PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2014) Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. Environ Sci Technol 48(16):9382–9390PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ciprotti M, Tebbutt NC, Lee FT, Lee ST, Gan HK, McKee DC, Chappell B (2015) Phase I imaging and pharmacodynamic trial of CS-1008 in patients with metastatic colorectal cancer. J Clin Oncol 33(24):2609–2616PubMedPubMedCentralCrossRefGoogle Scholar
  27. Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci 113(14):3850–3854PubMedCrossRefPubMedCentralGoogle Scholar
  28. Colby AH, Berry SM, Moran AM, Pasion KA, Liu R, Colson YL, Herrera VL (2017) Highly specific and sensitive fluorescent nanoprobes for image-guided resection of sub-millimeter peritoneal tumors. ACS Nano 11(2):1466–1477PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13(6):419–431CrossRefGoogle Scholar
  30. Dearling JL, Packard AB (2017) Molecular imaging in nanomedicine—a developmental tool and a clinical necessity. J Control Release 261:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons from FDA-approved nanomedicines. J Control Release 187:133–144Google Scholar
  32. Dezsi L, Fulop T, Meszaros T, Szenasi G, Urbanics R, Vazsonyi C, Metselaar JM (2014) Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release 195:2–10PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dodson BP, Levine AD (2015) Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 15(1):70PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, Mutlu GM (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11(12):5201–5207PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dunn P, Kuo TT, Shih LY, Wang PN, Sun CF, Chang MJ (1998) Bone marrow failure and myelofibrosis in a case of PVP storage disease. Am J Hematol 57(1):68–71PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ekdawi SN, Stewart JM, Dunne M, Stapleton S, Mitsakakis N, Dou YN, Allen C (2015) Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model. J Control Release 207:101–111PubMedCrossRefPubMedCentralGoogle Scholar
  37. Feliu N, Docter D, Heine M, del Pino P, Ashraf S, Kolosnjaj-Tabi J, Stauber RH (2016) In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 45(9):2440–2457PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fischer S (2014) Regulating nanomedicine: new nano tools offer great promise for the future-if regulators can solve the difficulties that hold development back. IEEE Pulse 5(2):21–24PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ge Y, Li S, Wang S, Moore R (2014) Nanomedicine; nanostruct. Springer, OtawaGoogle Scholar
  41. Geretti E, Leonard SC, Dumont N, Lee H, Zheng J, De Souza R, Nielsen UB (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Res 14(9):2060–2071Google Scholar
  42. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goel S, Ni D, Cai W (2017) Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 11(6):5233–5237PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grafmuller S, Manser P, Krug, H. F, Wick P, von Mandach U (2013) Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model. J Vis Exp 18:(76) e50401, 1–7Google Scholar
  45. Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, Andresen TL (2015) Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9(7):6985–6995PubMedCrossRefPubMedCentralGoogle Scholar
  46. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JSW (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7(2):243–254PubMedPubMedCentralGoogle Scholar
  47. Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212PubMedCrossRefPubMedCentralGoogle Scholar
  48. He X, Nie H, Wang K, Tan W, Wu X, Zhang P (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80(24):9597–9603PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, Low S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39–128ra39PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hu G, Wang Y, He Q, Gao H (2015) Multistage drug delivery system based on microenvironment-responsive dendrimer–gelatin nanoparticles for deep tumor penetration. RSC Adv 5(104):85933–85937CrossRefGoogle Scholar
  51. Hua S, de Matos MB, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hung AH, Duch MC, Parigi G, Rotz MW, Manus LM, Mastarone DJ, Hersam MC (2013) Mechanisms of gadographene-mediated proton spin relaxation. J Phys Chem 117(31):16263–16273Google Scholar
  53. Hung AH, Holbrook RJ, Rotz MW, Glasscock CJ, Mansukhani ND, MacRenaris KW, Meade TJ (2014) Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS Nano 8(10):10168–10177PubMedPubMedCentralCrossRefGoogle Scholar
  54. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Khalil AT, Shah SA (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed 7(12):1129–1150CrossRefGoogle Scholar
  55. Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R (2018a) Potential phytocompounds for developing breast cancer therapeutics: nature’s healing touch. Eur J Pharmacol 827:125–148PubMedCrossRefPubMedCentralGoogle Scholar
  56. Iqbal J, Abbasi BA, Khalil AT, Ali B, Mahmood T, Kanwal S, Ali W (2018b) Dietary isoflavones, the modulator of breast carcinogenesis: current landscape and future perspectives. Asian Pac J Trop Med 11(3):186–193CrossRefGoogle Scholar
  57. Irfan M, Seiler M (2010) Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 49(3):1169–1196CrossRefGoogle Scholar
  58. Jabir NR, Anwar K, Firoz CK, Oves M, Kamal MA, Tabrez S (2018) An overview on the current status of cancer nanomedicines. Curr Med Res Opin 34(5):911–921PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 12:2957–2978PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jain RK (1997) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 26(2–3):71–90PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jiang W, von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim BY (2017a) Designing nanomedicine for immuno-oncology. Nat Biomed Eng 1(2):0029CrossRefGoogle Scholar
  66. Jiang W, Yuan H, Chan CK, von Roemeling CA, Yan Z, Weissman IL, Kim BY (2017b) Lessons from immuno-oncology: a new era for cancer nanomedicine? Nat Rev Drug Discov 16(6):369PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kar SK, Rath B (2016) Real-world data analytics in global pharmaceutical marketing. IUP. J Knowl Manag XIV:48–59Google Scholar
  68. Karathanasis E, Ghaghada KB (2016) Crossing the barrier: treatment of brain tumors using nanochain particles. WIREs Nanomed Nanobiotechnol 8(5):678–695CrossRefGoogle Scholar
  69. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, Vanhoeij M, Duhoux FP, Gevaert T, Simon P, Schallier D, Fontaine C, Vaneycken I, Vanhove C, De Greve J, Lamote J, Caveliers V, Lahoutte T (2016) Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med 57(1):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  70. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290PubMedPubMedCentralCrossRefGoogle Scholar
  71. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017a) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia Thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 10(4):186–201CrossRefGoogle Scholar
  72. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017b) Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem.
  73. Khawar IA, Kim JH, Kuh HJ (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201:78–89PubMedCrossRefPubMedCentralGoogle Scholar
  74. Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, Miyauchi Y (1984) Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 54(11):2367–2374PubMedCrossRefPubMedCentralGoogle Scholar
  75. Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC (2011) In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 44(10):1018–1028PubMedCrossRefPubMedCentralGoogle Scholar
  76. Koushik O, Rao Y, Kumar P, Karthikeyan R (2016) Nano drug delivery systems to overcome cancer drug resistance—a review. J Nanomed Nanotechnol 7(378):2Google Scholar
  77. Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kreyling WG, Hirn S, Mooller W, Schleh C, Wenk A, Celik G, Sperling R (2013) Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8(1):222–233PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Tietze R (2017) Nanoparticles for radiooncology: mission, vision, challenges. Biomaterials 120:155–184PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kuo TT, Hu S, Huang CL, Chan HL, Chang MJ, Dunn P, Chen YJ (1997) Cutaneous involvement in polyvinylpyrrolidone storage disease: a clinicopathologic study of five patients, including two patients with severe anemia. Am J Surg Pathol 21(11):1361–1367PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P (2017) Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9(4):46PubMedCentralCrossRefGoogle Scholar
  83. Lammers T, Kiessling F, Hennink WE, Storm G (2012a) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lammers T, Rizzo LY, Storm G, Kiessling F (2012b) Personalized nanomedicine. Clin Cancer Res 18(18):4889–4894PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL (2015) Fate and transport of molybdenum disulfide nanomaterials in sand columns. Environ Eng Sci 32(2):163–173PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lavik E, Von Recum H (2011) The role of nanomaterials in translational medicine. ACS Nano 5(5):3419–3424PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lehner R, Wang X, Marsch S, Hunziker P (2013) Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomed Nanotechnol Biol Med 9(6):742–757CrossRefGoogle Scholar
  88. Li HJ, Du JZ, Du XJ, Xu CF, Sun CY, Wang HX, Wang J (2016) Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci U S A 113:4164–4169PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2014) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394PubMedCrossRefPubMedCentralGoogle Scholar
  90. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed 3(5):703–717CrossRefGoogle Scholar
  91. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ma X, Tang J, Shen Y, Fan M, Tang H, Radosz M (2009) Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J Am Chem Soc 131(41):14795–14803PubMedCrossRefPubMedCentralGoogle Scholar
  94. Manshian BB, Jiménez J, Himmelreich U, Soenen SJ (2017) Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  95. Miller MA, Gadde S, Pfirschke C, Engblom C, Sprachman MM, Kohler RH, Yang KS, Laughney AM, Wojtkiewicz G, Kamaly N, Bhonagiri S, Pittet MJ, Farokhzad OC, Weissleder R (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging. Nanoparticle Sci Transl Med 7(314):314ra183PubMedCrossRefPubMedCentralGoogle Scholar
  96. Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 7(6):1959–1973PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mutlu GM, Budinger GS, Green AA, Urich D, Soberanes S, Chiarella SE, Hersam MC (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10(5):1664–1670PubMedPubMedCentralCrossRefGoogle Scholar
  99. O’brien MER, Wigler N, Inbar MCBCSG, Rosso R, Grischke E, Santoro A, Orlandi F (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ojha T, Rizzo L, Storm G, Kiessling F, Lammers T (2015) Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin Drug Deliv 12(8):1203–1207PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12(23):3157–3177CrossRefGoogle Scholar
  102. Pathak Y, Thassu D (2016) Drug delivery nanoparticles formulation and characterization. CRC Press, Boca RatonGoogle Scholar
  103. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615PubMedCrossRefPubMedCentralGoogle Scholar
  104. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Strauss HW (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149–260ra149PubMedPubMedCentralCrossRefGoogle Scholar
  105. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  106. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31(30):7606–7619PubMedCrossRefPubMedCentralGoogle Scholar
  107. Rivera GP, Oberdörster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4(10):5527–5531CrossRefGoogle Scholar
  108. Rong T, Hemmati HD, Robert L, Kohane DS (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134(21):8848–8855CrossRefGoogle Scholar
  109. Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, Gao H (2015) Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials 60:100–110PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sadelain M, Riviere I, Riddell S (2017) Therapeutic T cell engineering. Nature 545(7655):423.431PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sandstrom M, Lindskog K, Velikyan I, Wennborg A, Feldwisch J, Sandberg D, Tolmachev V, Orlova A, Sorensen J, Carlsson J, Lindman H, Lubberink M (2016) Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med 57(6):867–871PubMedCrossRefPubMedCentralGoogle Scholar
  112. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicol 6(1):36–46CrossRefGoogle Scholar
  113. Schneider P, Korolenko TA, Busch U (1997) A review of drug- induced lysosomal disorders of the liver in man and laboratory animals. Microsc Res Tech 36(4):253–275PubMedCrossRefPubMedCentralGoogle Scholar
  114. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Murdoch WJ (2010) Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 132(12):4259–4265PubMedCrossRefPubMedCentralGoogle Scholar
  115. Shen Y, Ma X, Zhang B, Zhou Z, Sun Q, Jin E, Fan M (2011) Degradable dual pH and temperature responsive photoluminescent dendrimers. Chem Eur J 17(19):5319–5326PubMedCrossRefPubMedCentralGoogle Scholar
  116. Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK (2012) High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 7:e40006PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341(6151):1192–1198PubMedCrossRefPubMedCentralGoogle Scholar
  118. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986PubMedCrossRefPubMedCentralGoogle Scholar
  119. Stapleton S, Milosevic M, Tannock IF, Allen C, Jaffray DA (2015) The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. J Control Release 211:163–170PubMedCrossRefPubMedCentralGoogle Scholar
  120. Stern ST, Hall JB, Lee LY, Wood LJ, Paciotti GF, Tamarkin L, McNeil SE (2010) Translational considerations for cancer nanomedicine. J Control Release 146(2):164–174PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sun Q, Radosz M, Shen Y (2012) Challenges in design of translational nanocarriers. J Control Release 164(2):156–169PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Lodge TP (2014a) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014b) Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem Int Edition 53(46):12320–12364Google Scholar
  124. Sunderland KS, Yang M, Mao C (2017) Phage- enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Edition 56(8):1964–1992CrossRefGoogle Scholar
  125. Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, Van Kirk EA, Murdoch WJ (2010) Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine 5(6):855–865PubMedCrossRefPubMedCentralGoogle Scholar
  126. Thomsen HS (2016) Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium—1997−2006−2016. Part 2. Acta Radiol 57:643PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313(1):35–56PubMedCrossRefPubMedCentralGoogle Scholar
  128. Tyrrell ZL, Shen Y, Radosz M (2010) Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci 35(9):1128–1143CrossRefGoogle Scholar
  129. Urbanics R, Bedocs P, Szebeni J (2015) Lessons learned from the porcine CARPA model: constant and variable responses to different nanomedicines and administration protocols. Eur J Nanomed 7(3):219–231CrossRefGoogle Scholar
  130. Van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV (2016) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. In Intracellular Deliv III (pp 163–200) Springer ChamGoogle Scholar
  131. Venditto VJ, Szoka FC (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65(1):80–88PubMedCrossRefPubMedCentralGoogle Scholar
  132. de Vries EGE, de Jong S, Gietema JA (2015) Molecular imaging as a tool for drug development and trial design. J Clin Oncol 33(24):2585–−2587PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wang Y, Grainger DW (2014) Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front Chem Sci Eng 8(3):265–275CrossRefGoogle Scholar
  134. Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Wang HF (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118(3):233–243PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wang J, Byrne JD, Napier ME, Desimone JM (2011) More effective nanomedicines through particle design. Small 7(14):1919–1931PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang B, He X, Zhang Z, Zhao Y, Feng W (2012a) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, Wang M (2012b) Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12(6):3050–3061PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W, Shen Y (2015a) The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9(7):7195–7206PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wang X, Duch MC, Mansukhani N, Ji Z, Liao YP, Wang M, Lin S (2015b) Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano 9(3):3032–3043PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, Xia T (2015c) Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11(38):5079–5087PubMedPubMedCentralCrossRefGoogle Scholar
  141. Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15(6):361PubMedPubMedCentralCrossRefGoogle Scholar
  142. Weiss GJ, Chao J, Neidhart JD, Ramanathan RK, Bassett D, Neidhart JA, Garmey E (2013) First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Investig New Drugs 31(4):986–1000CrossRefGoogle Scholar
  143. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131PubMedCrossRefPubMedCentralGoogle Scholar
  144. Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, von Mandach U (2010) Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118(3):432PubMedCrossRefPubMedCentralGoogle Scholar
  145. Winer EP, Berry DA, Woolf S, Duggan D, Kornblith A, Harris LN, Norton L (2004) Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: cancer and leukemia group B trial 9342. J Clin Oncol 22(11):2061–2068PubMedCrossRefPubMedCentralGoogle Scholar
  146. Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14(3):228PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yaari Z, da Silva D, Zinger A, Goldman E, Kajal A, Tshuva R, Barak E, Dahan N, Hershkovitz D, Goldfeder M, Roitman JS, Schroeder A (2016) Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun 7:13325PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yu M, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9(7):6655–6674PubMedPubMedCentralCrossRefGoogle Scholar
  149. Yu M, Zhou C, Liu L, Zhang S, Sun S, Hankins JD, Zheng J (2017) Interactions of renal clearable gold nanoparticles with tumor microenvironments: vasculature and acidity effects. Angew Chem 129(15):4378–4383CrossRefGoogle Scholar
  150. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356PubMedPubMedCentralGoogle Scholar
  151. Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18(12):3229–3241PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhang Z, Wang J, Nie X, Wen T, Ji Y, Wu X, Chen C (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136(20):7317–7326PubMedCrossRefPubMedCentralGoogle Scholar
  154. Zhou T, Yu M, Zhang B, Wang L, Wu X, Zhou H, Wei T (2014) Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy. Adv Funct Mater 24(44):6922–6932CrossRefGoogle Scholar
  155. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2012) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46(3):622–631PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.College of Life SciencesShaanxi Normal UniversityXianChina
  3. 3.UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate StudiesUniversity of South AfricaPretoriaSouth Africa
  4. 4.Nanosciences African Network (NANOAFNET)iThemba LABS-National Research FoundationSomerset WestSouth Africa
  5. 5.Department of Eastern Medicine and SurgeryQarshi UniversityLahorePakistan
  6. 6.Department of ZoologyUniversity of Gujrat, Sub-Campus RawalpindiRawalpindiPakistan
  7. 7.Irma Lerma Rangel College of Pharmacy, Department of Pharmaceutical SciencesKingsvilleUSA
  8. 8.Department of Chemistry and Chemical Engineering, SBA School of Science and EngineeringLahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations