Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9089–9103 | Cite as

Thermophilic biodesulfurization and its application in oil desulfurization

  • Shuiquan Chen
  • Chaocheng Zhao
  • Qiyou Liu
  • Meng Zang
  • Chunshuang Liu
  • Yunbo Zhang
Mini-Review
  • 245 Downloads

Abstract

To reduce the harm caused to the environment by fuel combustion and meet the increasingly stringent emission standards, the sulfur content of fuels should be reduced. Dibenzothiophene, benzothiophene, and their derivatives are sulfur-containing components of fuels that are difficult to desulfurize and can therefore cause great environmental damage. Biodesulfurization is a desulfurization method that has the advantage of being able to remove dibenzothiophene and its derivatives removed easily under conditions that are relatively mild when compared with hydrodesulfurization. This paper introduces the advantages of thermophilic biodesulfurization compared with mesophilic biodesulfurization; analyzes the desulfurization mechanism, including the desulfurization pathways and enzymic systems of desulfurization bacteria; and discusses the application of biodesulfurization in oil desulfurization. The main problems existing in biodesulfurization and possible solutions are also analyzed in this paper. Biological desulfurization is a promising method for desulfurization; accordingly, more studies investigating biodesulfurization of actual oil are needed to enable the industrialized application of biodesulfurization.

Keywords

Biodesulfurization Thermophilic bacteria Dibenzothiophene Enzyme Oil desulfurization 

Notes

Funding

This study was funded by the Fundamental Research Funds for the Central Universities (No. 16CX06008A). We would like to thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adak S, Begley TP (2016) Dibenzothiophene catabolism proceeds via a flavin-N5-oxide intermediate. J Am Chem Soc 138:6424–6426.  https://doi.org/10.1021/jacs.6b00583 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alejandro Dinamarca M, Orellana L, Aguirre J, Baeza P, Espinoza G, Canales C, Ojeda J (2014) Biodesulfurization of dibenzothiophene and gas oil using a bioreactor containing a catalytic bed with Rhodococcus rhodochrous immobilized on silica. Biotechnol Lett 36:1649–1652.  https://doi.org/10.1007/s10529-014-1529-y CrossRefPubMedGoogle Scholar
  3. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631.  https://doi.org/10.1016/S0016-2361(02)00324-1 CrossRefGoogle Scholar
  4. Bachmann RT, Johnson AC, Edyvean RGJ (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237.  https://doi.org/10.1016/j.ibiod.2013.09.011 CrossRefGoogle Scholar
  5. Bhatia S, Sharma DK (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109.  https://doi.org/10.1016/j.bej.2010.04.001 CrossRefGoogle Scholar
  6. Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res 19:3491–3497.  https://doi.org/10.1007/s11356-012-0884-2 CrossRefGoogle Scholar
  7. Boc A, Alpha BD, Makarenkov V (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res 40:573–579.  https://doi.org/10.1093/nar/gks485 CrossRefGoogle Scholar
  8. Boc A, Philippe H, Makarenkov V (2010) Inferring and validating horizontal gene transfer events using bipartition dissimilarity. Syst Biol 59:195–211.  https://doi.org/10.1093/sysbio/syp103 CrossRefPubMedGoogle Scholar
  9. Boniek D, Figueiredo D, Dos Santos AFB, De Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17:29–37.  https://doi.org/10.1007/s10098-014-0812-x CrossRefGoogle Scholar
  10. Chen H, Cai YB, Zhang WJ, Li W (2009) Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour Technol 100:2085–2087.  https://doi.org/10.1016/j.biortech.2008.10.010 CrossRefPubMedGoogle Scholar
  11. Chen J, Ring Z (2004) HDS reactivities of dibenzothiophenic compounds in a LC-finer LGO and H2S/NH3 inhibition effect. Fuel 83:305–313.  https://doi.org/10.1016/j.fuel.2003.08.009 CrossRefGoogle Scholar
  12. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359.  https://doi.org/10.1038/86744 CrossRefPubMedGoogle Scholar
  13. Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2010) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour Technol 101:1102–1105.  https://doi.org/10.1016/j.biortech.2009.08.058 CrossRefPubMedGoogle Scholar
  14. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716.  https://doi.org/10.1128/jb.176.21.6707-6716.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp strain IGTS8. Appl Environ Microbiol 59:2837–2843PubMedPubMedCentralGoogle Scholar
  16. Depauw GA, Froment GF (1997) Molecular analysis of the Sulphur components in a light cycle oil of a catalytic cracking unit by gas chromatography with mass spectrometric and atomic emission detection. J Chromatogr A 761:231–247.  https://doi.org/10.1016/S0021-9673(96)00819-9 CrossRefGoogle Scholar
  17. Derikvand P, Etemadifar Z, Biria D (2014) Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis R1 immobilized cells in a biphasic system. Int Biodeterior Biodegrad 86:343–348.  https://doi.org/10.1016/j.ibiod.2013.10.006 CrossRefGoogle Scholar
  18. Duan X, Zhang L, Zhou D, Ji K, Ma T, Shui W, Li G, Li X (2013) Crystallization and preliminary structural analysis of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:597–601.  https://doi.org/10.1107/S1744309113011172 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65:4967–4972PubMedPubMedCentralGoogle Scholar
  20. Furuya T, Ishii Y, ichi NK, Kino K, Kirimura K (2003) Thermophilic biodesulfurization of hydrodesulfurized light gas oils by Mycobacterium phlei WU-F1. FEMS Microbiol Lett 221:137–142.  https://doi.org/10.1016/S0378-1097(03)00169-1 CrossRefPubMedGoogle Scholar
  21. Furuya T, Kirimura K, Kino K, Usami S (2002) Thermophilic biodesulfurization of naphthothiophene and 2-ethylnaphthothiophene by a dibenzothiophene-desulfurizing bacterium, Mycobacterium phlei WU-F1. Appl Microbiol Biotechnol 58:237–240.  https://doi.org/10.1007/s00253-001-0877-4 CrossRefPubMedGoogle Scholar
  22. Furuya T, Kirimura K, Kino K, Usami S (2001) Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1. FEMS Microbiol Lett 204:129–133.  https://doi.org/10.1016/S0378-1097(01)00397-4 CrossRefPubMedGoogle Scholar
  23. Furuya T, Takahashi S, Ishii Y, Kino K, Kirimura K (2004) Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication. Biochem Biophys Res Commun 313:570–575.  https://doi.org/10.1016/j.bbrc.2003.11.157 CrossRefPubMedGoogle Scholar
  24. Furuya T, Takahashi S, Iwasaki Y, Ishii Y, Kino K, Kirimura K (2005) Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J Biosci Bioeng 99:577–585.  https://doi.org/10.1263/jbb.99.577 CrossRefPubMedGoogle Scholar
  25. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709.  https://doi.org/10.1038/nbt1296-1705 CrossRefPubMedGoogle Scholar
  26. Gün G, Yürüm Y, Dinler Doʇanay G (2015) Revisiting the biodesulfurization capability of hyperthermophilic archaeon Sulfolobus solfataricus P2 revealed DBT consumption by the organism in an oil/water two-phase liquid system at high temperatures. Turk J Chem 39:255–266.  https://doi.org/10.3906/kim-1407-52 CrossRefGoogle Scholar
  27. Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng 101:322–327.  https://doi.org/10.1263/jbb.101.322 CrossRefPubMedGoogle Scholar
  28. Gunam IBW, Yamamura K, Nengah Sujaya I, Antara NS, Aryanta WR, Tanaka M, Tomita F, Sone T, Asano K (2013) Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J Microbiol Biotechnol 23:473–482.  https://doi.org/10.4014/jmb.1207.07070 CrossRefPubMedGoogle Scholar
  29. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366.  https://doi.org/10.1007/s00253-004-1755-7 CrossRefPubMedGoogle Scholar
  30. Hino T, Hamamoto H, Suzuki H, Yagi H, Ohshiro T, Nagano S (2017) Crystal structures of TdsC, a dibenzothiophene monooxygenase from the thermophile Paenibacillus sp. A11-2, reveal potential for expanding its substrate selectivity. J Biol Chem 292:15804–15813.  https://doi.org/10.1074/jbc.M117.788513 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Husnik F, McCutcheon JP (2018) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16:67–79.  https://doi.org/10.1038/nrmicro.2017.137 CrossRefPubMedGoogle Scholar
  32. Irani ZA, Mehrnia MR, Yazdian F, Soheily M, Mohebali G, Rasekh B (2011) Analysis of petroleum biodesulfurization in an airlift bioreactor using response surface methodology. Bioresour Technol 102:10585–10591.  https://doi.org/10.1016/j.biortech.2011.08.120 CrossRefPubMedGoogle Scholar
  33. Ishii Y, Kobayashi M, Konishi J, Onaka T, Okumura K, Suzuki M (1998) Desulfurization of petroleum by the use of biotechnology. Nippon Kagaku Zassi 1998:373–381CrossRefGoogle Scholar
  34. Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M (2000a) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 270:81–88.  https://doi.org/10.1006/bbrc.2000.2370 CrossRefPubMedGoogle Scholar
  35. Ishii Y, Konishi J, Suzuki M, Maruhashi K (2000b) Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 90:591–599.  https://doi.org/10.1016/S1389-1723(00)90002-1 CrossRefPubMedGoogle Scholar
  36. Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50:63–70.  https://doi.org/10.1007/s00284-004-4403-7 CrossRefPubMedGoogle Scholar
  37. Kaufman EN, Harkins JB, Borole AP (1998) Comparison of batchstirred and electrospray reactors for biodesulfurization of dibenzothiophene in crude oil and hydrocarbon feedstocks. Appl Biochem Biotechnol 73:127–144.  https://doi.org/10.1007/BF02785650 CrossRefGoogle Scholar
  38. Kayser KJ, Cleveland L, Park HS, Kwak JH, Kolhatkar A, Kilbane JJ (2002) Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10 capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59:737–745.  https://doi.org/10.1007/s00253-002-1030-8 CrossRefPubMedGoogle Scholar
  39. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618.  https://doi.org/10.1038/nrg2386 CrossRefPubMedGoogle Scholar
  40. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314.  https://doi.org/10.1016/j.copbio.2006.04.005 CrossRefPubMedGoogle Scholar
  41. Kilbane JJ (2017) Biodesulfurization: how to make it work? Arab J Sci Eng 42:1–9.  https://doi.org/10.1007/s13369-016-2269-1 CrossRefGoogle Scholar
  42. Kilbane JJ, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:1–9.  https://doi.org/10.1007/s11274-016-2084-6 CrossRefGoogle Scholar
  43. Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S (2001) Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91:262–266.  https://doi.org/10.1016/S1389-1723(01)80131-6 CrossRefPubMedGoogle Scholar
  44. Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K (2004) Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 65:703–713.  https://doi.org/10.1007/s00253-004-1652-0 CrossRefPubMedGoogle Scholar
  45. Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50.  https://doi.org/10.1080/00021369.1973.10860640 CrossRefGoogle Scholar
  46. Konishi J, Ishii Y, Onaka T, Maruhashi K (2003) Purification and characterization of the monooxygenase catalyzing sulfur-atom specific oxidation of dibenzothiophene and benzothiophene from the thermophilic bacterium Paenibacillus sp. strain A11-2. Appl Microbiol Biotechnol 60:128–133.  https://doi.org/10.1007/s00253-002-1096-3 CrossRefGoogle Scholar
  47. Konishi J, Ishii Y, Onaka T, Ohta Y, Suzuki M, Maruhashi K (2000a) Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2. J Biosci Bioeng 90:607–613.  https://doi.org/10.1016/S1389-1723(00)90004-5 CrossRefPubMedGoogle Scholar
  48. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169PubMedPubMedCentralGoogle Scholar
  49. Konishi J, Maruhashi K (2003) 2-(2′-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl Microbiol Biotechnol 62:356–361.  https://doi.org/10.1007/s00253-003-1331-6 CrossRefPubMedGoogle Scholar
  50. Konishi J, Onaka T, Ishii Y, Suzuki M (2000b) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154.  https://doi.org/10.1016/S0378-1097(00)00186-5 CrossRefPubMedGoogle Scholar
  51. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169.  https://doi.org/10.1016/S0378-3820(03)00007-9 CrossRefGoogle Scholar
  54. Lee MK, Senius JD, Grossman MJ (1995) Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 61:4362–4366PubMedPubMedCentralGoogle Scholar
  55. Li F, Xu P, Feng J, Meng L, Zheng Y, Luo L, Ma C (2005a) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276–281.  https://doi.org/10.1128/AEM.71.1.276-281.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Li F, Zhang Z, Feng J, Cai X, Xu P (2007) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228.  https://doi.org/10.1016/j.jbiotec.2006.07.002 CrossRefPubMedGoogle Scholar
  57. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301–307.  https://doi.org/10.1016/S0378-1097(03)00397-5 CrossRefPubMedGoogle Scholar
  58. Li L, Zhao CC, Liu QY, Zhang YB (2014a) The study of degradation characteristics of isolated Pseudomonas sp. LKY-5 on dibenzothiophene. In: Advanced materials research. Trans Tech Publications, pp 136–139Google Scholar
  59. Li L, Zhao CC, Liu QY, Zhang YB (2012a) Isolation and genetic identification of Dibenzothiophene degrading Bacteria from contaminated soil. In: Advanced materials research. Trans Tech Publications, pp 292–295Google Scholar
  60. Li Q, Feng J, Gao C, Li F, Yu C, Meng L, Zhang Z, Ma C, Gu L, Wu G, Xu P (2012b) Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochem 47:1144–1149.  https://doi.org/10.1016/j.procbio.2012.04.010 CrossRefGoogle Scholar
  61. Li W, Zhang Y, Wang MD, Shi Y (2005b) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50.  https://doi.org/10.1016/j.femsle.2005.04.025 CrossRefPubMedGoogle Scholar
  62. Li L, Zhao C, Liu Q, Zhang Y, Liu C, Xue J (2014b) Optimization for microbial degradation of dibenzothiophene by Pseudomonas sp. LKY-5 using response surface methodology. China Pet Process Petrochemical Technol 16:19–26Google Scholar
  63. Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L (2014) Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins Struct Funct Bioinforma 82:1708–1720.  https://doi.org/10.1002/prot.24525 CrossRefGoogle Scholar
  64. Martínez I, El-Said Mohamed M, Santos VE, García JL, García-Ochoa F, Díaz E (2017) Metabolic and process engineering for biodesulfurization in gram-negative bacteria. J Biotechnol 262:47–55.  https://doi.org/10.1016/j.jbiotec.2017.09.004 CrossRefPubMedGoogle Scholar
  65. Martínez I, Mohamed MES, Rozas D, García JL, Díaz E (2016) Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab Eng 35:46–54.  https://doi.org/10.1016/j.ymben.2016.01.005 CrossRefPubMedGoogle Scholar
  66. Martinez I, Santos VE, Gomez E, Garcia-Ochoa F (2016) Biodesulfurization of dibenzothiophene by resting cells of Pseudomonas putida CECT5279: influence of the oxygen transfer rate in the scale-up from shaken flask to stirred tank reactor. J Chem Technol Biotechnol 91:184–189.  https://doi.org/10.1002/jctb.4559 CrossRefGoogle Scholar
  67. McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264.  https://doi.org/10.1016/S1369-5274(99)80045-9 CrossRefPubMedGoogle Scholar
  68. Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels - past, present and future perspectives. Int Biodeterior Biodegrad 110:163–180.  https://doi.org/10.1016/j.ibiod.2016.03.011 CrossRefGoogle Scholar
  69. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546.  https://doi.org/10.1016/S0958-1669(00)00154-3 CrossRefPubMedGoogle Scholar
  70. Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2′-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta, Proteins Proteomics 1598:122–130.  https://doi.org/10.1016/S0167-4838(02)00365-5 CrossRefGoogle Scholar
  71. Noda KI, Kogure T, Irisa S, Murakami Y, Sakata M, Kuroda A (2008) Enhanced dibenzothiophene biodesulfurization in a microchannel reactor. Biotechnol Lett 30:451–454.  https://doi.org/10.1007/s10529-007-9557-5 CrossRefPubMedGoogle Scholar
  72. Nomura N, Takada M, Okada H, Shinohara Y, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100:398–402.  https://doi.org/10.1263/jbb.100.398 CrossRefPubMedGoogle Scholar
  73. Ohshiro T, Aoi Y, Torii K, Izumi Y (2002) Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1. Appl Microbiol Biotechnol 59:649–657.  https://doi.org/10.1007/s00253-002-1082-9 CrossRefPubMedGoogle Scholar
  74. Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344.  https://doi.org/10.1111/j.1574-6968.1994.tb06850.x CrossRefGoogle Scholar
  75. Ohshiro T, Hirata T, Izumi Y (1996a) Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol Lett 142:65–70.  https://doi.org/10.1016/0378-1097(96)00244-3 CrossRefGoogle Scholar
  76. Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K (2005) Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100:266–273.  https://doi.org/10.1263/jbb.100.266 CrossRefPubMedGoogle Scholar
  77. Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J Biosci Bioeng 88:610–616.  https://doi.org/10.1016/S1389-1723(00)87088-7 CrossRefPubMedGoogle Scholar
  78. Ohshiro T, Nakura S, Ishii Y, Kino K, Kirimura K, Izumi Y (2009) Novel reactivity of Dibenzothiophene monooxygenase from Bacillus subtilis WU-S2B. Biosci Biotechnol Biochem 73:2128–2130.  https://doi.org/10.1271/bbb.90284 CrossRefPubMedGoogle Scholar
  79. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an enzyme involved in the Dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71:2815–2821.  https://doi.org/10.1271/bbb.70436 CrossRefPubMedGoogle Scholar
  80. Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene (DBT) degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J Ferment Bioeng 83:233–237.  https://doi.org/10.1016/S0922-338X(97)80985-3 CrossRefGoogle Scholar
  81. Ohshiro T, Suzuki K, Izumi Y (1996b) Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-1. J Ferment Bioeng 81:121–124.  https://doi.org/10.1016/0922-338X(96)87588-X CrossRefGoogle Scholar
  82. Okai M, Lee WC, Guan LJ, Ohshiro T, Izumi Y, Tanokura M (2017) Crystal structure of dibenzothiophene sulfone monooxygenase BdsA from Bacillus subtilis WU-S2B. Proteins Struct Funct Bioinforma 85:1171–1177.  https://doi.org/10.1002/prot.25267 CrossRefGoogle Scholar
  83. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:2961–2973.  https://doi.org/10.1099/00221287-143-9-2961 CrossRefPubMedGoogle Scholar
  84. Onaka T, Kobayashi M, Ishii Y, Okumura K, Suzuki M (2000) Application of solid-phase extraction to the analysis of the isomers generated in biodesulfurization against methylated dibenzothiophenes. J Chromatogr A 903:193–202.  https://doi.org/10.1016/S0021-9673(00)00892-X CrossRefPubMedGoogle Scholar
  85. Parry RJ, Li W (1997) Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens MG456-hF10. Arch Biochem Biophys 339:47–54.  https://doi.org/10.1006/abbi.1996.9857 CrossRefPubMedGoogle Scholar
  86. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp strain IGTS8. Appl Environ Microbiol 61:468–475PubMedPubMedCentralGoogle Scholar
  87. Porto B, Maass D, Oliveira JV, de Oliveira D, Yamamoto CI, Ulson de Souza AA, Ulson de Souza SMAG (2018) Heavy gas oil biodesulfurization using a low-cost bacterial consortium. J Chem Technol Biotechnol 93:2359–2363.  https://doi.org/10.1002/jctb.5580 CrossRefGoogle Scholar
  88. Shan GB, Xing JM, Luo MF, Liu HZ, Chen JY (2003) Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett 25:1977–1981.  https://doi.org/10.1023/B:BILE.0000004388.15751.8c CrossRefPubMedGoogle Scholar
  89. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596.  https://doi.org/10.1016/j.biotechadv.2007.07.003 CrossRefPubMedGoogle Scholar
  90. Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B Environ 41:207–238.  https://doi.org/10.1016/S0926-3373(02)00212-6 CrossRefGoogle Scholar
  91. Srinivasaraghavan K, Sarma PM, Lal B (2006) Comparative analysis of phenotypic and genotypic characteristics of two desulfurizing bacterial strains, Mycobacterium phlei SM120-1 and Mycobacterium phlei GTIS10. Lett Appl Microbiol 42:483–489.  https://doi.org/10.1111/j.1472-765X.2006.01842.x CrossRefPubMedGoogle Scholar
  92. Su T, Su J, Liuc S, Zhang C, He J, Huang Y, Xu S, Gu L (2018) Structural and biochemical characterization of BdsA from Bacillus subtilis WU-S2B, a key enzyme in the “4S” desulfurization pathway. Front Microbiol 9:1–11.  https://doi.org/10.3389/fmicb.2018.00231 CrossRefGoogle Scholar
  93. Takahashi S, Furuya T, Ishii Y, Kino K, Kirimura K (2009) Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B. J Biosci Bioeng 107:38–41.  https://doi.org/10.1016/j.jbiosc.2008.09.008 CrossRefPubMedGoogle Scholar
  94. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721.  https://doi.org/10.1038/nrmicro1234 CrossRefPubMedGoogle Scholar
  95. Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I (2008a) Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Ind Eng Chem Res 47:7476–7482.  https://doi.org/10.1021/ie800494p CrossRefGoogle Scholar
  96. Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I (2008b) Study of a newly isolated thermophilic bacterium capable of Kuhemond heavy crude oil and dibenzothiophene biodesulfurization following 4S pathway at 60°C. J Chem Technol Biotechnol 83:1689–1693.  https://doi.org/10.1002/jctb.1987 CrossRefGoogle Scholar
  97. Ueno K, Kitagawa F, Kitamura N (2004) One-step electrochemical cyanation reaction of pyrene in polymer microchannel-electrode chips. Bull Chem Soc Jpn 77:1331–1338.  https://doi.org/10.1246/bcsj.77.1331 CrossRefGoogle Scholar
  98. Wang J, Davaadelger B, Salazar JK, Butler RR, Pombert JF, Kilbane JJ, Stark BC (2015) Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability. Biotechnol Lett 37:2201–2211.  https://doi.org/10.1007/s10529-015-1918-x CrossRefPubMedGoogle Scholar
  99. Webb JL (1966) Enzyme and metabolic inhibitors, volume III. Academic pressGoogle Scholar
  100. Witschel M, Nagel S, Egli T (1997) Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J Bacteriol 179:6937–6943.  https://doi.org/10.1128/jb.179.22.6937-6943.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Woo CL, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′- hydroxybiphenyl-2-sulfinic acid desulfinase. J Biol Chem 281:32534–32539.  https://doi.org/10.1074/jbc.M602974200 CrossRefGoogle Scholar
  102. Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75.  https://doi.org/10.1006/bbrc.1996.5878 CrossRefPubMedGoogle Scholar
  103. Zhang L, Duan X, Zhou D, Dong Z, Ji K, Meng W, Li G, Li X, Yang H, Ma T, Rao Z (2014) Structural insights into the stabilization of active, tetrameric DszC by its C-terminus. Proteins Struct Funct Bioinforma 82:2733–2743.  https://doi.org/10.1002/prot.24638 CrossRefGoogle Scholar
  104. Zhang SH, Chen H, Li W (2013) Kinetic analysis of biodesulfurization of model oil containing multiple alkyl dibenzothiophenes. Appl Microbiol Biotechnol 97:2193–2200.  https://doi.org/10.1007/s00253-012-4048-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical EngineeringChina University of Petroleum (East China)QingdaoPeople’s Republic of China
  2. 2.State Key Laboratory of Petroleum Pollution ControlChina University of Petroleum (East China)QingdaoPeople’s Republic of China

Personalised recommendations