Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9003–9014 | Cite as

Managing microbial communities in membrane biofilm reactors

  • A. Ontiveros-ValenciaEmail author
  • C. Zhou
  • H.-P. Zhao
  • R. Krajmalnik-Brown
  • Y. Tang
  • B. E. Rittmann


Membrane biofilm reactors (MBfRs) deliver gaseous substrates to biofilms that develop on the outside of gas-transfer membranes. When an MBfR delivers electron donors hydrogen (H2) or methane (CH4), a wide range of oxidized contaminants can be reduced as electron acceptors, e.g., nitrate, perchlorate, selenate, and trichloroethene. When O2 is delivered as an electron acceptor, reduced contaminants can be oxidized, e.g., benzene, toluene, and surfactants. The MBfR’s biofilm often harbors a complex microbial community; failure to control the growth of undesirable microorganisms can result in poor performance. Fortunately, the community’s structure and function can be managed using a set of design and operation features as follows: gas pressure, membrane type, and surface loadings. Proper selection of these features ensures that the best microbial community is selected and sustained. Successful design and operation of an MBfR depends on a holistic understanding of the microbial community’s structure and function. This involves integrating performance data with omics results, such as with stoichiometric and kinetic modeling.


Membrane biofilm reactors Microbial community Biofilm Gaseous substrates 


Compliance with ethical standards

Ethical statement

The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Loffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42(15):5718–5726CrossRefGoogle Scholar
  2. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187CrossRefGoogle Scholar
  3. Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91CrossRefGoogle Scholar
  4. Cabezas A, de Araujo JC, Callejas C, Galès A, Hamelin J, Marone A, Sousa DZ, Trably E, Etchebehere C (2015) How to use molecular biology tools for the study of the anaerobic digestion process? Rev Environ Sci Biotechnol 14(4):555–593CrossRefGoogle Scholar
  5. Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18):6791–6799CrossRefGoogle Scholar
  6. Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491CrossRefGoogle Scholar
  7. Cheung K, Gu J-D (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. W J Microbiol Biotechnol 21(3):213–219CrossRefGoogle Scholar
  8. Chung J, Nerenberg R, Rittmann BE (2006a) Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40(5):1664–1671CrossRefGoogle Scholar
  9. Chung J, Ryu HD, Abbaszadegan M, Rittmann BE (2006b) Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Appl Microbiol Biotechnol 72(6):1330–1339. CrossRefPubMedGoogle Scholar
  10. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Sci 284(5418):1318–1322CrossRefGoogle Scholar
  11. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867CrossRefGoogle Scholar
  12. Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF III, Done HY, Popat SC, Krajmalnik-Brown R (2014) Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS One 9(6):e100654CrossRefGoogle Scholar
  13. Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R (2012) Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Factories 11(1):128CrossRefGoogle Scholar
  14. Deo RP, Songkasiri W, Rittmann BE, Reed DT (2010) Surface complexation of neptunium (V) onto whole cells and cell components of Shewanella alga: modeling and experimental study. Environ Sci Technol 44(13):4930–4935CrossRefGoogle Scholar
  15. Downing LS, Nerenberg R (2008a) Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Biotechnol Bioeng 101(6):1193–1204CrossRefGoogle Scholar
  16. Downing LS, Nerenberg R (2008b) Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res 42(14):3697–3708CrossRefGoogle Scholar
  17. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125(1):100–128CrossRefGoogle Scholar
  18. Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41(7):2303–2310. CrossRefPubMedGoogle Scholar
  19. Eberl HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, van Loosdrecht MCM, Wanner O (2006) Mathematical Modeling of Biofilms, IWA Scientific and Technical Report No.18; IWA Publishers, LondonGoogle Scholar
  20. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, De Beer D (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nat 464(7288):543CrossRefGoogle Scholar
  21. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Nat Acad Sci 113(45):12792–12796CrossRefGoogle Scholar
  22. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614CrossRefGoogle Scholar
  23. Flemming H-C (2011) The perfect slime. Colloid Surf B: Biointerfaces 86(2):251–259CrossRefGoogle Scholar
  24. Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66(2):543–548CrossRefGoogle Scholar
  25. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140CrossRefGoogle Scholar
  26. Gilmore KR, Terada A, Smets BF, Love NG, Garland JL (2013) Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: a demonstration. Environ Eng Sci 30(1):38–45CrossRefGoogle Scholar
  27. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567CrossRefGoogle Scholar
  28. He JZ, Holmes VF, PKH L, Alvarez-Cohen L (2007) Influence of vitamin B-12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853CrossRefGoogle Scholar
  29. He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65CrossRefGoogle Scholar
  30. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Loffler FE (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450CrossRefGoogle Scholar
  31. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401CrossRefGoogle Scholar
  32. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  33. Johnson DR, Nemir A, Andersen GL, Zinder SH, Alvarez-Cohen L (2009) Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294(2):198–206. CrossRefPubMedGoogle Scholar
  34. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhart R, Kahnt J, Böcher R, Thauer RK (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426(6968):878CrossRefGoogle Scholar
  35. Lai YS, Ontiveros-Valencia A, Ilhan ZE, Zhou Y, Miranda E, Maldonado J, Krajmalnik-Brown R, Rittmann BE (2017) Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor. Water Res 123:825–833CrossRefGoogle Scholar
  36. Lai C-Y, Wen L-L, Shi L-D, Zhao K-K, Wang Y-Q, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P (2016c) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50(18):10179–10186CrossRefGoogle Scholar
  37. Lai C-Y, Wen L-L, Zhang Y, Luo S-S, Wang Q-Y, Luo Y-H, Chen R, Yang X, Rittmann BE, Zhao H-P (2016b) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res 88:467–474CrossRefGoogle Scholar
  38. Lai C-Y, Yang X, Tang Y, Rittmann BE, Zhao H-P (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48(6):3395–3402CrossRefGoogle Scholar
  39. Lai C-Y, Zhong L, Zhang Y, Chen J-X, Wen L-L, Shi L-D, Sun Y-P, Ma F, Rittmann BE, Zhou C (2016a) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50(11):5832–5839CrossRefGoogle Scholar
  40. Laspidou CS, Rittmann BE (2004a) Evaluating trends in biofilm density using the UMCCA model. Water Res 38(14–15):3362–3372CrossRefGoogle Scholar
  41. Laspidou CS, Rittmann BE (2004b) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res 38(14–15):3349–3361CrossRefGoogle Scholar
  42. Li A, Zhou C, Liu Z, Xu X, Zhou Y, Zhou D, Tang Y, Ma F, Rittmann BE (2018) Direct solid-state evidence of H2-induced partial U (VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnol Bioeng 115(7):1685–1693CrossRefGoogle Scholar
  43. Liu Z, Zhou C, Ontiveros-Valencia A, Luo YH, Long M, Xu H, Rittman BE (2018) Accurate O2 delivery enabled benzene biodegradation through aerobic activation followed by denitrification-coupled mineralization. Biotechnol Bioeng (accepted). CrossRefGoogle Scholar
  44. Löffler FE, Ritalahti KM, Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ Microbiol 63:4982–4985PubMedPubMedCentralGoogle Scholar
  45. Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE (2018) Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Wat Res 144:134–144CrossRefGoogle Scholar
  46. Long M, Zhou C, Xia S, Guadiea A (2017) Concomitant Cr (VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem Eng J 315:58–66CrossRefGoogle Scholar
  47. Luo Y-H, Chen R, Wen L-L, Meng F, Zhang Y, Lai C-Y, Rittmann BE, Zhao H-P, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49(4):2341–2349CrossRefGoogle Scholar
  48. Lv P-L, Zhong L, Dong Q-Y, Yang S-L, Shen W-W, Zhu Q-S, Lai C-Y, Luo A-C, Tang Y, Zhao H-P (2018) The effect of electron competition on chromate reduction using methane as electron donor. Environ Sci Pollut Res 25(7):6609–6618CrossRefGoogle Scholar
  49. Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94CrossRefGoogle Scholar
  50. Martin KJ, Picioreanu C, Nerenberg R (2015) Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling. Biotechnol Bioeng 112(9):1843–1853CrossRefGoogle Scholar
  51. Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37(1):98–107CrossRefGoogle Scholar
  52. Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571CrossRefGoogle Scholar
  53. Maymo-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl-chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61(11):3928–3933PubMedPubMedCentralGoogle Scholar
  54. Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519CrossRefGoogle Scholar
  55. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541CrossRefGoogle Scholar
  56. Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41(12):2726–2738CrossRefGoogle Scholar
  57. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10(1):162–173PubMedGoogle Scholar
  58. Nerenberg R, Kawagoshi Y, Rittmann BE (2006) Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res 40(17):3290–3296CrossRefGoogle Scholar
  59. Nguyen BT, Rittmann BE (2016) Effects of inorganic carbon and pH on growth kinetics of Synechocystis sp. PCC 6803. Algal Res 19:363–369CrossRefGoogle Scholar
  60. Ontiveros-Valencia A, Ilhan ZE, Kang DW, Rittmann B, Krajmalnik-Brown R (2013a) Phylogenetic analysis of nitrate-and sulfate-reducing bacteria in a hydrogen-fed biofilm. FEMS Microbiol Ecol 85(1):158–167CrossRefGoogle Scholar
  61. Ontiveros-Valencia A, Penton CR, Krajmalnik-Brown R, Rittmann BE (2016) Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm. Biotechnol Bioeng 113(8):1736–1744CrossRefGoogle Scholar
  62. Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2013b) Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm. Biotechnol Bioeng 110(12):3139–3147CrossRefGoogle Scholar
  63. Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2014a) Managing the interactions between sulfate-and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Res 55:215–224CrossRefGoogle Scholar
  64. Ontiveros-Valencia A, Tang Y, Zhao H-P, Friese D, Overstreet R, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014b) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48(13):7511–7518CrossRefGoogle Scholar
  65. Ontiveros-Valencia A, Zhou C, Ilhan ZE, de Saint Cyr LC, Krajmalnik-Brown R, Rittmann BE (2017) Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. Water Res 125:341–349CrossRefGoogle Scholar
  66. Ontiveros-Valencia A, Ziv-El M, Zhao H-P, Feng L, Rittmann BE, Krajmalnik-Brown R (2012) Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. Environ Sci Technol 46(20):11289–11298CrossRefGoogle Scholar
  67. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745PubMedPubMedCentralGoogle Scholar
  68. Pellicer-Nàcher C, Franck S, Gülay A, Ruscalleda M, Terada A, Al-Soud WA, Hansen MA, Sørensen SJ, Smets BF (2014) Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics. Microb Biotechnol 7(1):32–43CrossRefGoogle Scholar
  69. Rittmann BE (2018) Biofilms, Active substrata, and me. Wat Res 132:135–145CrossRefGoogle Scholar
  70. Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604CrossRefGoogle Scholar
  71. Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Eng Life Sci 1(1):57–65Google Scholar
  72. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56CrossRefGoogle Scholar
  73. Shanahan JW, Semmens MJ (2004) Multipopulation model of membrane-aerated biofilms. Environ Sci Technol 38(11):3176–3183CrossRefGoogle Scholar
  74. Smidt H, ADL A, van der Oost J, de Vos WM (2000) Halorespiring bacteria-molecular characterization and detection. Enzym Microb Technol 27:812–820CrossRefGoogle Scholar
  75. Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol 42(6):1833–1844CrossRefGoogle Scholar
  76. Tang Y, Ontiveros-Valencia A, Feng L, Zhou C, Krajmalnik-Brown R, Rittmann BE (2013) A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnol Bioeng 110(3):763–772CrossRefGoogle Scholar
  77. Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012c) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. Environ Sci Technol 46(3):1598–1607CrossRefGoogle Scholar
  78. Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012b) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. Environ Sci Technol 46(3):1608–1615CrossRefGoogle Scholar
  79. Tang Y, Zhou C, Van Ginkel SW, Ontiveros-Valencia A, Shin J, Rittmann BE (2012a) Hydrogen permeability of the hollow fibers used in H 2-based membrane biofilm reactors. J Membr Sci 407:176–183CrossRefGoogle Scholar
  80. Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A (2003) Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J Biosci Bioeng 95(2):170–178CrossRefGoogle Scholar
  81. Van Ginkel SW, Yang Z, Kim B-O, Sholin M, Rittmann BE (2011) The removal of selenate to low ppb levels from flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Bioresour Technol 102(10):6360–6364CrossRefGoogle Scholar
  82. Wang P-C, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55(7):1665–1669PubMedPubMedCentralGoogle Scholar
  83. Wang R, Zhan X, Zhang Y, Zhao J (2011) Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater. Front Environ Sci Eng China 5(1):48–56CrossRefGoogle Scholar
  84. Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511CrossRefGoogle Scholar
  85. Wolfaardt GM, Lawrence JR, Korber DR (1999) Function of EPS. In Microbial extracellular polymeric substances. Springer, Berlin, pp 171–200CrossRefGoogle Scholar
  86. Zemskaya TI, Pogodaeva TV, Shubenkova OV, Сhernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov OM, Egorov AV, Krylov AA (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar Lett 30(3–4):411–425CrossRefGoogle Scholar
  87. Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11(1):137CrossRefGoogle Scholar
  88. Zhao H-P, Ilhan ZE, Ontiveros-Valencia A, Tang Y, Rittmann BE, Krajmalnik-Brown R (2013b) Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environ Sci Technol 47(13):7396–7403CrossRefGoogle Scholar
  89. Zhao H-P, Ontiveros-Valencia A, Tang Y, Kim BO, Ilhan ZE, Krajmalnik-Brown R, Rittmann B (2013a) Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ Sci Technol 47(3):1565–1572CrossRefGoogle Scholar
  90. Zhao H-P, Van Ginkel S, Tang Y, Kang D-W, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45(23):10155–10162CrossRefGoogle Scholar
  91. Zhong L, Lai C-Y, Shi L-D, Wang K-D, Dai Y-J, Liu Y-W, Ma F, Rittmann BE, Zheng P, Zhao H-P (2017) Nitrate effects on chromate reduction in a methane-based biofilm. Water Res 115:130–137CrossRefGoogle Scholar
  92. Zhou C, Ontiveros-Valencia A, de Saint Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014a) Uranium removal and microbial community in a H 2-based membrane biofilm reactor. Water Res 64:255–264CrossRefGoogle Scholar
  93. Zhou C, Vannela R, Hyun SP, Hayes KF, Rittmann BE (2014b) Growth of Desulfovibrio vulgaris when respiring U (VI) and characterization of biogenic uraninite. Environ Sci Technol 48(12):6928–6937CrossRefGoogle Scholar
  94. Zhou C, Wang Z, Ontiveros-Valencia A, Long M, Lai C-Y, Zhao H-P, Xia S, Rittmann BE (2017) Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl Catal B Environ 206:461–470CrossRefGoogle Scholar
  95. Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, Conrad ME, Tang YJ, Alvarez-Cohen L (2014) Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci 111(17):6419–6424CrossRefGoogle Scholar
  96. Ziv-El M, Popat SC, Cai K, Halden RU, Krajmalnik-Brown R, Rittmann BE (2012) Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor. Biotechnol Bioeng 109(9):2200–2210CrossRefGoogle Scholar
  97. Ziv-El MC, Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43(1):173–181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Ontiveros-Valencia
    • 1
    • 2
    • 3
    Email author
  • C. Zhou
    • 3
  • H.-P. Zhao
    • 4
    • 5
  • R. Krajmalnik-Brown
    • 3
    • 6
  • Y. Tang
    • 7
  • B. E. Rittmann
    • 3
    • 6
  1. 1.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Escuela de Ingenieria y CienciasTecnologico de MonterreyPueblaMexico
  3. 3.Biodesign Swette Center for Environmental BiotechnologyArizona State UniversityTempeUSA
  4. 4.College of Environmental and Resource ScienceZhejiang UniversityZhejiangChina
  5. 5.Zhejiang Provincial Key Laboratory of Water Pollution Control & Environmental SafetyZhejiang UniversityZhejiangChina
  6. 6.School of Sustainable Engineering and the Built EnvironmentArizona State UniversityTempeUSA
  7. 7.FAMU-FSU College of EngineeringFlorida State UniversityTallahasseeUSA

Personalised recommendations