Applied Microbiology and Biotechnology

, Volume 102, Issue 20, pp 8963–8977 | Cite as

Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039

  • Aa Haeruman Azam
  • Fumiya Hoshiga
  • Ippei Takeuchi
  • Kazuhiko Miyanaga
  • Yasunori TanjiEmail author
Environmental biotechnology


We have previously generated strains of Staphylococcus aureus SA003 resistant to its specific phage ɸSA012 through a long-term coevolution experiment. However, the DNA mutations responsible for the phenotypic change of phage resistance are unknown. Whole-genome analysis revealed eight genes that acquired mutations: six point mutations (five missense mutations and one nonsense mutation) and two deletions. Complementation of the phage-resistant strains by the wild-type alleles showed that five genes were linked to phage adsorption of ɸSA012, and two mutated host genes were linked to the inhibition of post-adsorption. Unlike ɸSA012, infection by ɸSA039, a close relative of ɸSA012, onto early coevolved phage-resistant SA003 (SA003R2) was impaired drastically. Here, we identified that ɸSA012 and ɸSA039 adsorb to the cell surface S. aureus SA003 through a different mechanism. ɸSA012 requires the backbone of wall teichoic acids (WTA), while ɸSA039 requires both backbone and the β-GlcNAc residue. In silico analysis of the ɸSA039 genome revealed that several proteins in the tail and baseplate region were different from ɸSA012. The difference in tail and baseplate proteins might be the factor for specificity difference between ɸSA012 and ɸSA039.


Staphylococcus aureus Twort-like phage Phage-resistance mechanism Bacteriophage receptor Bacteriophage therapy 



We would like to thank Professor Takehiko Itoh (School of Life Science and Technology, Tokyo Institute of Technology) for allowing us to use NGS analysis in his lab. We also thank Professor Masaaki Wachi (School of Life Science and Technology, Tokyo Institute of Technology) for his useful advice.

Funding information

This work was funded by the Ministry of Education, Culture, Sport, Science and Technology of Japan (Grant number: 24246133).

Compliance with ethical standards

Conflict of interest

All authors declare that there is no conflict of interest in this article.

Ethical approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Supplementary material

253_2018_9269_MOESM1_ESM.pdf (360 kb)
ESM 1 (PDF 360 kb)


  1. Abedon ST (2011) Lysis from without. Bacteriophage 1:46–49. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bae T, Schneewind O (2006) Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55:58–63. CrossRefGoogle Scholar
  4. Baptista C, Santos MA, São-José C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernheimer HP, Tiraby JG (1976) Inhibition of phage infection by Pneumococcus capsule. Virology 73:308–309. CrossRefPubMedGoogle Scholar
  6. Blake KL, O’Neill AJ, Mengin-Lecreulx D, Henderson PJF, Bostock JM, Dunsmore CJ, Simmons KJ, Fishwick CWG, Leeds JA, Chopra I (2009) The nature of Staphylococcus aureus MurA and MurZ and approaches for detection of peptidoglycan biosynthesis inhibitors. Mol Microbiol 72:335–343. CrossRefPubMedGoogle Scholar
  7. Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377CrossRefGoogle Scholar
  8. Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci 109:18909–18914. CrossRefPubMedGoogle Scholar
  9. Brown S, Santa Maria JP, Walker S (2013) Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336. CrossRefPubMedGoogle Scholar
  10. Brunskil EW, De Jonge BLM, Bayles KW (1997) The Staphylococcus aureus scdA gene: a novel locus that affects cell division and morphogenesis. Microbiology 143:2877–2882CrossRefGoogle Scholar
  11. Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758CrossRefGoogle Scholar
  13. Chen W, Zhang Y, Yeo WS, Bae T, Ji Q (2017) Rapid and efficient genome editing in Staphylococcus aureus by esing an engineered CRISPR/Cas9 system. J Am Chem Soc 139:3790–3795. CrossRefPubMedGoogle Scholar
  14. Cui Z, Song Z, Wang Y, Zeng L, Shen W, Wang Z, Li Q, He P, Qin J, Guo X (2012) Complete genome sequence of wide-host-range Staphylococcus aureus phage JD007. J Virol 86:13880–13881. CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Jonge BLM, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain: the role of penicillin binding protein 2A. J Biol Chem 267:11248–11254PubMedGoogle Scholar
  16. Denes T, Den Bakker HC, Tokman JI, Guldimann C, Wiedmann M (2015) Selection and characterization of phage-resistant mutant strains of Listeria monocytogenes reveal host genes linked to phage adsorption. Appl Environ Microbiol 81:4295–4305. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ellwood DC (1970) The wall content and composition of Bacillus subtilis var. niger grown in a chemostat. Biochem J 118:367–373CrossRefGoogle Scholar
  18. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG, Walsh CT (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci 99:7687–7692CrossRefGoogle Scholar
  19. Fischer CR, Yoichi M, Unno H, Tanji Y (2004) The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. FEMS Microbiol Lett 241:171–177. CrossRefPubMedGoogle Scholar
  20. Golais F, Hollý J, Vítkovská J (2013) Coevolution of bacteria and their viruses. Folia Microbiol (Praha) 58:177–186CrossRefGoogle Scholar
  21. Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 14:635–642. CrossRefPubMedGoogle Scholar
  22. Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248CrossRefGoogle Scholar
  23. Ishihama A (1992) MicroReview role of the RNA polymerase a subunit in transcription activation. Mol Microbiol 6:3283–3288CrossRefGoogle Scholar
  24. Iwano H, Inoue Y, Takasago T, Kobayashi H, Furusawa T, Taniguchi K, Fujiki J, Yokota H, Usui M, Tanji Y, Hagiwara K, Higuchi H, Tamura Y (2018) Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology 7:8. CrossRefPubMedCentralGoogle Scholar
  25. Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, Bae T (2011) Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol 193:4672–4684. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Keer J, Smeulders MJ, Williams HD (2001) A purF mutant of Mycobacterium smegmatis has impaired survival during oxygen-starved stationary phase. Microbiology 147:473–481. CrossRefPubMedGoogle Scholar
  28. Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M (2004) The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 53:1221–1231. CrossRefPubMedGoogle Scholar
  29. Konrad M (1992) Cloning and expression of the essential gene for guanylate kinase from yeast. J Biol Chem 267:25652–25655PubMedGoogle Scholar
  30. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. CrossRefGoogle Scholar
  31. Lee CY, Buranen SL, Ye Z-H (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103:101–105CrossRefGoogle Scholar
  32. Leitner G, Lubashevsky E, Trainin Z (2003) Staphylococcus aureus vaccine against mastitis in dairy cows, composition and evaluation of its immunogenicity in a mouse model. Vet Immunol Immunopatho l 93:159–167. CrossRefGoogle Scholar
  33. Levin BR, Moineau S, Bushman M, Barrangou R (2013) The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet 9:e1003312. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. CrossRefGoogle Scholar
  35. Li X, Gerlach D, Du X, Larsen J, Stegger M, Kuhner P, Peschel A, Xia G, Winstel V (2015) An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5:17219. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Nat Publ Gr 6:26455. CrossRefGoogle Scholar
  37. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103CrossRefGoogle Scholar
  38. Łobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of staphylococcal Twort-like phages - potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216. CrossRefPubMedGoogle Scholar
  39. Loessner MJ, Rees CED, Stewart GSAB, Scherer S (1996) Construction of luciferase reporter bacteriophage A511:: luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140Google Scholar
  40. Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102:2563–2581CrossRefGoogle Scholar
  41. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. CrossRefPubMedGoogle Scholar
  42. Meredith TC, Swoboda JG, Walker S (2008) Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 190:3046–3056. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mongodin E, Finan J, Climo MW, Rosato A, Gill S, Archer GL (2003) Microarray transcription analysis of clinical Staphylococcus aureus isolates resistant to vancomycin. J Bacteriol 185:4638–4643. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3:e00277. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of bertani and weigle). Microbiol Mol Biol Rev 64:412–434. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Oeschger MP (1978) Guanylate kinase from Escherichia coli B. Methods Enzymol 51:473–482CrossRefGoogle Scholar
  48. Osada K, Takeuchi I, Miyanaga K, Tanji Y (2017) Coevolution between Staphylococcus aureus isolated from mastitic milk and its lytic bacteriophage φSA012 in batch co-culture with serial transfer. Biochem Eng J 126:16–23. CrossRefGoogle Scholar
  49. Osmundson J, Darst SA (2013) Biochemical insights into the function of phage G1 gp67 in Staphylococcus aureus. Bacteriophage 3:e24767. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Osmundson J, Montero-Diez C, Westblade LF, Hochschild A, Darst SA (2012) Promoter-specific transcription inhibition in Staphylococcus aureus by a phage protein. Cell 151:1005–1016. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sakoulas G, Eliopoulos GM, Fowler VG, Moellering RC, Novick RP, Lucindo N, Yeaman MR, Bayer AS (2005) Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother 49:2687–2692. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Scholl D, Adhya S, Merril C (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872–4874. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Soldo B, Lazarevic V, Karamata D (2002) tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148:2079–2087. CrossRefPubMedGoogle Scholar
  54. Stephenson FH (2011) Working with bacteriophages. Cal Mol Biol Biotechnol 4:83–98. CrossRefGoogle Scholar
  55. Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng ASY, Peterman MA, Tobias A, Wei P (1998) Genes and regulatory sites of the “host-takeover module” in the terminal redundancy of Bacillus subtilis bacteriophage SPO1. Virology 246:329–340. CrossRefPubMedGoogle Scholar
  56. Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Takeuchi I, Osada K, Azam AH, Asakawa H, Miyanaga K, Tanji Y (2016) The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal Twort-like phages. Appl Environ Microbiol 82:5763–5774. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287. CrossRefPubMedGoogle Scholar
  59. Viles FJ, Silverman L (1949) Determination of starch and cellulose with anthrone. Anal Chem 21(8):950–953. CrossRefGoogle Scholar
  60. Weber G, Nakamura H, Natsumeda Y, Szekeres T, Nagai M (1992) Regulation of GTP biosynthesis. Adv Enzym Regul 32:57–69CrossRefGoogle Scholar
  61. Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A (2010) Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285:13405–13415. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yao J, Zhong J, Fang Y, Geisinger E, Novick RP, Lambowitz AM (2006) Use of targetrons to disrupt essential and nonessential genes in Staphylococcus aureus reveals temperature sensitivity of Ll.LtrB group II intron splicing. RNA 12:1271–1281. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG (2016) Role of bacteriophage T4 baseplate in regulating assembly and infection. Proc Natl Acad Sci 113:2654–2659. CrossRefPubMedGoogle Scholar
  65. Yee R, Cui P, Shi W, Feng J, Zhang Y (2015) Genetic screen reveals the role of purine metabolism in Staphylococcus aureus persistence to rifampicin. Antibiotics 4:627–642. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yuan Y, Gao M (2017) Jumbo bacteriophages: an overview. Front Microbiol 8:403. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aa Haeruman Azam
    • 1
  • Fumiya Hoshiga
    • 1
  • Ippei Takeuchi
    • 1
  • Kazuhiko Miyanaga
    • 1
  • Yasunori Tanji
    • 1
    Email author
  1. 1.School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations