Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8319–8327 | Cite as

Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate

  • Hyeon Ji Noh
  • Ji Eun Woo
  • Sang Yup Lee
  • Yu-Sin Jang
Biotechnological products and process engineering
  • 307 Downloads

Abstract

Butyl butyrate is widely used as a fragrance additive for foods and beverages. The first step in the currently used process is the production of precursors, including butanol and butyrate, from petroleum using chemical catalysts, followed by the conversion of precursors to butyl butyrate by immobilized lipase. In this work, we engineered Clostridium acetobutylicum for the selective, one-step production of butyl butyrate from glucose. C. acetobutylicum ATCC 824, possessing a strong carbon flux that yields butanol and butyryl-CoA, was selected as a host and was engineered by introducing alcohol acyltransferases (AATs) from Fragaria x ananassa (strawberry) or Malus sp. (apple). Batch culture of the engineered C. acetobutylicum strain CaSAAT expressing the strawberry SAAT gene produced 50.07 mg/L of butyl butyrate with a selectivity of 84.8% of total esters produced. Also, the engineered C. acetobutylicum strain CaAAAT expressing the apple AAAT gene produced 40.60 mg/L of butyl butyrate with a selectivity of 87.4%. This study demonstrated the feasibility of the one-step fermentation of butyl butyrate from glucose in the engineered C. acetobutylicum, as a proof of concept.

Keywords

Butyl butyrate Clostridium acetobutylicum Alcohol acyltransferase Butanol Ester 

Notes

Funding information

This work was supported by a grant from the Ministry of Science and ICT (MSIT) through the National Research Foundation (NRF) of Korea (NRF-2016R1D1A3B04933184). SYL was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the MSIT through the NRF of Korea (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals by any of the authors.

Supplementary material

253_2018_9267_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1777 kb)

References

  1. Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FW, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chowdary GV, Prapulla SG (2002) The influence of water activity on the lipase catalyzed synthesis of butyl butyrate by transesterification. Process Biochem 38:393–397CrossRefGoogle Scholar
  3. Chung H, Yoon MK, Han J, Kim Y-S (2015) Evaluation of volatile organic compounds in alcoholic beverages consumed in Korea. J Korean Soc Appl Biol Chem 58:423–432CrossRefGoogle Scholar
  4. de Castro HF, de Oliveira PC, Soares CM, Zanin GM (1999) Immobilization of porcine pancreatic lipase on celite for application in the synthesis of butyl butyrate in a nonaqueous system. J Am Oil Chem Soc 76:147–152CrossRefGoogle Scholar
  5. Defilippi BG, Kader AA, Dandekar AM (2005) Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 168:1199–1210CrossRefGoogle Scholar
  6. Desai RP, Harris LM, Welker NE, Papoutsakis ET (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1:206–213CrossRefPubMedGoogle Scholar
  7. Duan X, Liu Y, You X, Jiang Z, Yang S, Yang S (2017) High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. Biotechnol Biofuels 10:223CrossRefPubMedPubMedCentralGoogle Scholar
  8. Giorno L, Drioli E (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol 18:339–349CrossRefPubMedGoogle Scholar
  9. Goulet C, Kamiyoshihara Y, Lam NB, Richard T, Taylor MG, Tieman DM, Klee HJ (2015) Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition. Mol Plant 8:153–162CrossRefPubMedGoogle Scholar
  10. Hernández I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama Vlieg JE (2007) Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 73:1544–1552CrossRefPubMedPubMedCentralGoogle Scholar
  11. Horton CE, Bennett GN (2006) Ester production in E. coli and C. acetobutylicum. Enzym Microb Technol 38:937–943CrossRefGoogle Scholar
  12. Horton CE, Huang K-X, Bennett GN, Rudolph FB (2003) Heterologous expression of the Saccharomyces cerevisiae alcohol acetyltransferase genes in Clostridium acetobutylicum and Escherichia coli for the production of isoamyl acetate. J Ind Microbiol Biotechnol 30:427–432CrossRefPubMedGoogle Scholar
  13. Jang Y-S, Lee JY, Lee J, Park JH, Im JA, Eom M-H, Lee J, Lee S-H, Song H, Cho J-H (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3:e00314–12Google Scholar
  14. Jang Y-S, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom M-H, Cho J-H, Seung DY (2013) Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Prog 29:1083–1088CrossRefPubMedGoogle Scholar
  15. Jenkins RW, Munro M, Nash S, Chuck CJ (2013) Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel 103:593–599CrossRefGoogle Scholar
  16. Kim RJ, Suh MC (2016) The GxSxG motif of Arabidopsis monoacylglycerol lipase (MAGL6 and MAGL8) is essential for their enzyme activities. Appl Biol Chem 59:833–840CrossRefGoogle Scholar
  17. Kirdi R, Ben Akacha N, Messaoudi Y, Gargouri M (2017) Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil. Biotechnol Bioprocess Eng 22:413–422CrossRefGoogle Scholar
  18. Kittithanesuan N, Phisalaphong M (2015) Enhanced acetone-butanol production from sugarcane juice by immobilized Clostridium acetobutylicum (ATCC 824) on thin-shell silk cocoons. Biotechnol Bioprocess Eng 20:599–607CrossRefGoogle Scholar
  19. Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Daza FG, Ellena V, Kengen SW, van der Oost J, Weusthuis RA (2017) Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng 41:92–101CrossRefPubMedGoogle Scholar
  20. Langrand G, Rondot N, Triantaphylides C, Baratti J (1990) Short chain flavour esters synthesis by microbial lipases. Biotechnol Lett 12:581–586CrossRefGoogle Scholar
  21. Layton DS, Trinh CT (2014) Engineering modular ester fermentative pathways in Escherichia coli. Metab Eng 26:77–88CrossRefPubMedGoogle Scholar
  22. Layton DS, Trinh CT (2016a) Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids. Biotechnol Bioeng 113:1764–1776CrossRefPubMedGoogle Scholar
  23. Layton DS, Trinh CT (2016b) Microbial synthesis of a branched-chain ester platform from organic waste carboxylates. Metab Eng Commun 3:245–251CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee JY, Jang Y-S, Lee J, Papoutsakis ET, Lee SY (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4:1432–1440CrossRefPubMedGoogle Scholar
  25. Lozano P, Pérez-Marın A, De Diego T, Gomez D, Paolucci-Jeanjean D, Belleville M, Rios G, Iborra J (2002) Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. J Membr Biol 201:55–64CrossRefGoogle Scholar
  26. Martins AB, Friedrich JL, Cavalheiro JC, Garcia-Galan C, Barbosa O, Ayub MA, Fernandez-Lafuente R, Rodrigues RC (2013) Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresour Technol 134:417–422CrossRefPubMedGoogle Scholar
  27. Matte CR, Bordinhão C, Poppe JK, Rodrigues RC, Hertz PF, Ayub MA (2016) Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J Mol Catal B Enzym 127:67–75CrossRefGoogle Scholar
  28. Mermelstein L, Papoutsakis E (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081PubMedPubMedCentralGoogle Scholar
  29. Mo S, Suh J-W (2016) Elucidation of first step of the allylmalonyl-CoA biosynthetic pathway by expression of heterologous KSIII gene and enhancement of 36-methyl-FK506 production by genetic and chemical engineering. Appl Biol Chem 59:77–88CrossRefGoogle Scholar
  30. Moon YH, Han KJ, Kim D, Day DF (2015) Enhanced production of butanol and isopropanol from sugarcane molasses using Clostridium beijerinckii optinoii. Biotechnol Bioprocess Eng 20:871–877CrossRefGoogle Scholar
  31. Natadiputri GH, Suwanto A, Kim HK (2015) One-step transesterification reaction using methanol-stable lipase for omega-3 fatty acid ethyl ester production. J Korean Soc Appl Biol Chem 58:195–202CrossRefGoogle Scholar
  32. Nghi DH, Ullrich R, Moritz F, Huong LM, Giap VD, Chi DH, Hofrichter M, Liers C (2015) The ascomycete Xylaria polymorpha produces an acetyl esterase that solubilises beech wood material to release water-soluble lignin fragments. J Korean Soc Appl Biol Chem 58:415–421CrossRefGoogle Scholar
  33. Park YC, Shaffer CEH, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25CrossRefPubMedGoogle Scholar
  34. Park S-J, Kim D-H, Yoo J, Hwang EY, Shin M-S, Lee N-T, Cho I-R, Kang H-G, Kim Y-J, Park S, Kim Y-W (2017a) Detection of organophosphate bound butyrylcholinesterase using a monoclonal antibody. Appl Biol Chem 60:233–240CrossRefGoogle Scholar
  35. Park S, Kim K, Han S-I, Kim EJ, Choi Y-E (2017b) Organic solvent-free lipid extraction from wet Aurantiochytrium sp. biomass for co-production of biodiesel and value-added products. Appl Biol Chem 60:101–108CrossRefGoogle Scholar
  36. Réjasse B, Lamare S, Legoy M-D, Besson T (2004) Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation. Org Biomol Chem 2:1086–1089CrossRefPubMedGoogle Scholar
  37. Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10:259–265CrossRefPubMedPubMedCentralGoogle Scholar
  38. Santos J, De Castro H (2006) Optimization of lipase-catalysed synthesis of butyl butyrate using a factorial design. World J Microbiol Biotechnol 22:1007–1011CrossRefGoogle Scholar
  39. Schreier, P. (1991) Food flavours. Part C: the flavour of fruits. Morton ID, MacLeod AJ (eds) Elsevier Science Publishers, 1990. Flavour Fragr J 6:105–105Google Scholar
  40. Seo S-O, Wang Y, Lu T, Jin Y-S, Blaschek HP (2017) Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production. Biotechnol Bioeng 114:106–112CrossRefPubMedGoogle Scholar
  41. Severini F, Flannelly T, Nolan DO, Leahy JJ, Kwapinski W (2016) Development of heterogeneous acid catalysts produced from the carbonization of Miscanthus x giganteus for the esterification of butyric acid to butyl butyrate with n-butanol. J Chem Technol Biotechnol 91:2076–2084CrossRefGoogle Scholar
  42. Sillers R, Chow A, Tracy B, Papoutsakis ET (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10:321–332CrossRefPubMedGoogle Scholar
  43. van den Berg C, Heeres AS, van der Wielen LAM, Straathof AJJ (2013) Simultaneous clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate. Biotechnol Bioeng 110:137–142CrossRefPubMedGoogle Scholar
  44. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717–2722PubMedPubMedCentralGoogle Scholar
  45. Woo JE, Lee SY, Jang Y-S (2018) Effects of nutritional enrichment on acid production from degenerated (non-solventogenic) Clostridium acetobutylicum strain M5. Appl Biol Chem 61:469–472CrossRefGoogle Scholar
  46. Wu Y-D, Xue C, Chen L-J, Yuan W-J, Bai F-W (2016) Improvements of metabolites tolerance in Clostridium acetobutylicum by micronutrient zinc supplementation. Biotechnol Bioprocess Eng 21:60–67CrossRefGoogle Scholar
  47. Xin F, Basu A, Yang K-L, He J (2016) Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour Technol 202:214–219CrossRefPubMedGoogle Scholar
  48. Yeon YJ, Park H-Y, Park K, Park HJ, Yoo YJ (2016) Structural basis for the substrate specificity of 3-hydroxybutyrate dehydrogenase. Biotechnol Bioprocess Eng 21:364–372CrossRefGoogle Scholar
  49. Zabetakis I, Holden MA (1997) Strawberry flavour: analysis and biosynthesis. J Sci Food Agric 74:421–434CrossRefGoogle Scholar
  50. Zhang ZT, Taylor S, Wang Y (2017) In situ esterification and extractive fermentation for butyl butyrate production with Clostridium tyrobutyricum. Biotechnol Bioeng 114:1428–1437CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program)Gyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations