Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9183–9192 | Cite as

Impact of disulfide bonds on the folding and refolding capability of a novel thermostable GH45 cellulase

  • Hong Yang
  • Yueqi Zhang
  • Xinxin Li
  • Yingguo Bai
  • Wei Xia
  • Rui Ma
  • Huiying Luo
  • Pengjun Shi
  • Bin Yao
Biotechnologically relevant enzymes and proteins

Abstract

A new cellulase (TaCel45) of glycoside hydrolase family 45 was identified in the thermophilic fungus Thielavia arenaria XZ7 and was successfully expressed in Pichia pastoris. The specific activities of TaCel45 towards lichenin, sodium carboxymethylcellulose (CMC-Na), and barley β-glucan were 769, 498, and 486 U/mg protein, respectively, which are higher than the values for all other reported GH45 cellulases. TaCel45 had maximum activity at pH 5.0–6.0 and 60–65 °C with barley β-glucan and CMC-Na as substrates and had a melting temperature (Tm) of 68.4 °C. However, TaCel45 exhibited extraordinary thermostability at 90 and 100 °C, retaining more than 70 and 45% of its activity after a 1-h incubation, respectively. Seven mutants (C11S, C12S, C16S, C31S, C171S, C193S, and C203S) were then constructed to investigate the effects of each disulfide bond on the structure, activity, and stability of TaCel45. As a result, six disulfide bonds (C11-C136, C16-C87, C31-C57, C88-C203, C90-C193, and C160-Cy171) were found to be indispensable for the folding, secretion, and activity of TaCel45, while C12-C48 was critical for thermal adaptation and refolding. The mutant C12S showed decreased optimal temperature and Tm values of 50 and 60.2 °C, respectively, and retained less than 50% of the thermal refolding ability of the wild type. Overall, this study demonstrated that disulfide bonds play a vital role in the folding and refolding capability and thermostability of this GH45 cellulase.

Keywords

Pichia pastoris Cellulase Disulfide bonds Thermostable Folding and refolding 

Notes

Acknowledgements

This study was supported by the National Key R&D Program of China (2016YFD050140902), the Chinese Academy of Agricultural Science and Technology Innovation Project (CAAS-XTCX201601101), and the National Chicken Industry Technology System of China (CARS-41).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9256_MOESM1_ESM.pdf (801 kb)
ESM 1 (PDF 801 kb)

References

  1. Baba Y, Shimonaka A, Koga J, Kubota H, Kono T (2005a) Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. J Bacteriol 187:3045–3051CrossRefGoogle Scholar
  2. Baba Y, Shimonaka A, Koga J, Murashima K, Kubota H, Kono T (2005b) Purification and characterization of a new endo-1,4-β-glucanase from Beltraniella portoricensis. Biosci Biotechnol Biochem 69:1198–1201CrossRefGoogle Scholar
  3. Béguin P, Millet J, Chauvaux S, Salamitou S, Tokatlidis K, Navas J, Fujino T, Lemaire M, Raynaud O, Daniel MK (1992) Bacterial cellulases. Biochem Soc Trans 20:42–46CrossRefGoogle Scholar
  4. Byrne N, Angell CA (2008) Protein unfolding, and the “tuning in” of reversible intermediate states, in protic ionic liquid media. J Mol Biol 378:707–714CrossRefGoogle Scholar
  5. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238CrossRefGoogle Scholar
  6. Chahed H, Boumaiza M, Ezzine A, Marzouki MN (2017) Heterologous expression and biochemical characterization of a novel thermostable Sclerotinia sclerotiorum GH45 endoglucanase in Pichia pastoris. Int J Biol Macromol 106:629–635CrossRefGoogle Scholar
  7. Chen X, Li W, Peng J, Yang Z, Hua C, Chao H (2018) Engineering the conserved and noncatalytic residues of a thermostable β-1,4-endoglucanase to improve specific activity and thermostability. Sci Rep 8:2954CrossRefGoogle Scholar
  8. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595CrossRefGoogle Scholar
  9. Davies GJ, Dodson GG, Hubbard RE, Tolley SP, Dauter Z, Wilson KS, Hjort C, Mikkelsen JM, Rasmussen G, Schülein M (1993) Structure and function of endoglucanase V. Nature 365:362–364CrossRefGoogle Scholar
  10. Davies GJ, Tolley SP, Henrissat B, Hjort C, Schulein M (1995) Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry 34:16210–16220CrossRefGoogle Scholar
  11. Delano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org
  12. Eberhardt RY, Gilbert HJ, Hazlewood GP (2000) Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology 146:1999–2008CrossRefGoogle Scholar
  13. Gao J, Huang JW, Li Q, Liu W, Ko TP, Zheng Y, Xiao X, Kuo CJ, Chen CC, Guo RT (2017) Characterization and crystal structure of a thermostable glycoside hydrolase family 45 1,4-β-endoglucanase from Thielavia terrestris. Enzym Microb Technol 99:32–37CrossRefGoogle Scholar
  14. Graham GC, Mayers P, Henry RJ (1994) A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques 16:48–50PubMedGoogle Scholar
  15. Guez V, Roux P, Navon A, Goldberg ME (2002) Role of individual disulfide bonds in hen lysozyme early folding steps. Protein Sci 11:1136–1151CrossRefGoogle Scholar
  16. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins 65:712–725CrossRefGoogle Scholar
  17. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  18. Igarashi K, Ishida T, Hori C, Samejima M (2008) Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 74:5628–5634CrossRefGoogle Scholar
  19. Kadowaki MA, Camilo CM, Muniz AB, Polikarpov I (2015) Functional characterization and low-resolution structure of an endoglucanase Cel45A from the filamentous fungus Neurospora crassa OR74A: thermostable enzyme with high activity toward lichenan and β-glucan. Mol Biotechnol 57:1–15CrossRefGoogle Scholar
  20. Kaspersen JD, Søndergaard A, Madsen DJ, Otzen DE, Pedersen JS (2017) Refolding of SDS-unfolded proteins by nonionic surfactants. Biophys J 112:1609–1620CrossRefGoogle Scholar
  21. Knubovets T, Osterhout JJ, Connolly PJ, Klibanov AM (1999) Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci U S A 96:1262–1267CrossRefGoogle Scholar
  22. Le QA, Joo JC, Yoo YJ, Kim YH (2012) Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol Bioeng 109:867–876CrossRefGoogle Scholar
  23. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681CrossRefGoogle Scholar
  24. Lu H, Zhang H, Shi P, Luo H, Wang Y, Yang P, Yao B (2013) A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol 97:8121–8128CrossRefGoogle Scholar
  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  26. Naika GS, Tiku PK (2011) Influence of ethylenediaminetetraacetic acid (EDTA) on the structural stability of endoglucanase from Aspergillus aculeatus. J Agric Food Chem 59:7341–7345CrossRefGoogle Scholar
  27. Ohmiya Y, Takeda T, Nakamura S, Sakai F, Hayashi T (1995) Purification and properties of a wall-bound endo-1,4-β-glucanase from suspension-cultured poplar cells. Plant Cell Physiol 36:607–614PubMedGoogle Scholar
  28. Pereira JDC, Giese EC, Moretti MMDS, Gomes ACDS, Perrone OM, Boscolo M, Silva RD, Gomes E, Martins DAB (2017) Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. In: Sentürk M (ed) Enzyme inhibitors and activators. IntechOpen Limited, London, UK, pp 139–164Google Scholar
  29. Pitman DJ, Banerjee S, Macari SJ, Castaldi CA, Crone DE, Bystroff C (2015) Exploring the folding pathway of green fluorescent protein through disulfide engineering. Protein Sci 24:341–353CrossRefGoogle Scholar
  30. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Spoel DVD (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar
  31. Schön A, Clarkson BR, Jaime M, Freire E (2017) Temperature stability of proteins: analysis of irreversible denaturation using isothermal calorimetry. Proteins 85:2009–2016CrossRefGoogle Scholar
  32. Skropeta D (2009) The effect of individual N-glycans on enzyme activity. Bioorg Med Chem 17:2645–2653CrossRefGoogle Scholar
  33. Slaytor M, Sugimoto A, Azuma J, Murashima K, Inoue T (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242CrossRefGoogle Scholar
  34. Somboonpatarakun C, Fukamizo T, Araki T, Klaynongsruang S (2016) Role of His101 in the protein folding/unfolding of a goose-type lysozyme from ostrich (Struthio camelus) egg white. Protein J 35:416–423CrossRefGoogle Scholar
  35. Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea. J Biotechnol 67:85–97CrossRefGoogle Scholar
  36. Tang B, Wei L, Tang W, Song L, Zhou R (2015) Effect of linker flexibility on the catalytic features of a glycoside hydrolase family 45 endoglucanase from Rhizopus stolonifer. Appl Biochem Biotechnol 176:2242–2252CrossRefGoogle Scholar
  37. Tao T, Meng K, Luo H, Turunen O, Zhang L, Cheng Y, Su X, Ma R, Shi P, Wang Y (2015) New insights into the role of T3 loop in determining catalytic efficiency of GH28 endo-polygalacturonases. PLoS One 10:e0135413CrossRefGoogle Scholar
  38. Valjakka J, Rouvinen J (2003) Structure of 20K endoglucanase from Melanocarpus albomyces at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 59:765–768CrossRefGoogle Scholar
  39. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145PubMedGoogle Scholar
  40. Wingfield PT (2001) Use of protein folding reagents. Curr Protoc Protein ScI 8:1–8Google Scholar
  41. Wonganu B, Pootanakit K, Boonyapakron K, Champreda VS, Eurwilaichitr L (2008) Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif 58:78–86CrossRefGoogle Scholar
  42. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387CrossRefGoogle Scholar
  43. Yang H, Shi P, Lu H, Wang H, Luo H, Huang H, Yang P, Yao B (2015) A thermophilic β-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chem 173:283–289CrossRefGoogle Scholar
  44. Yang H, Shi P, Liu Y, Xia W, Wang X, Cao H, Ma R, Luo H, Bai Y, Yao B (2016) The loop 3 of fungal endoglucanases of glycoside hydrolase family 12 modulates the catalytic efficiency. Appl Environ Microbiol 83:e03123–e03116Google Scholar
  45. Yong W, Yun G, Jian M, Qi W, Zhang XG (2011) Sinomyces: a new genus of anamorphic Pleosporaceae. Fungal Biol 115:188–195CrossRefGoogle Scholar
  46. Zhao J, Shi P, Li Z, Yang P, Luo H, Bai Y, Wang Y, Yao B (2012) Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresour Technol 121:404–410CrossRefGoogle Scholar
  47. Zhou Q, Ji P, Zhang J, Li X, Han C (2017) Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin. J Biosci Bioeng 124:271–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong Yang
    • 1
  • Yueqi Zhang
    • 1
  • Xinxin Li
    • 1
  • Yingguo Bai
    • 1
  • Wei Xia
    • 1
  • Rui Ma
    • 1
  • Huiying Luo
    • 1
  • Pengjun Shi
    • 1
  • Bin Yao
    • 1
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations