Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8213–8227 | Cite as

From radioactive ligands to biosensors: binding methods with olfactory proteins

  • Paolo Pelosi
  • Jiao Zhu
  • Wolfgang Knoll
Mini-Review
  • 94 Downloads

Abstract

In this paper, we critically review the binding protocols currently reported in the literature to measure the affinity of odorants and pheromones to soluble olfactory proteins, such as odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick class C2 (NPC2) proteins. The first part contains a brief introduction on the principles of binding and a comparison of the techniques adopted or proposed so far, discussing advantages and problems of each technique, as well as their suitable application to soluble olfactory proteins. In the second part, we focus on the fluorescent binding assay, currently the most widely used approach. We analyse advantages and drawbacks, trying to identify the causes of anomalous behaviours that have been occasionally observed, and suggest how to interpret the experimental data when such events occur. In the last part, we describe the state of the art of biosensors for odorants, using soluble olfactory proteins immobilised on biochips, and discuss the possibility of using such approach as an alternative way to measure binding events and dissociation constants.

Keywords

Ligand binding Odorant-binding proteins Chemosensory proteins Fluorescent assay Biosensors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alexander RW, Williams LT, Lefkowitz RJ (1975) Identification of cardiac beta-adrenergic receptors by (minus) [3H]alprenolol binding. Proc Natl Acad Sci U S A 72:1564–1568PubMedPubMedCentralCrossRefGoogle Scholar
  2. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754PubMedCrossRefGoogle Scholar
  3. Baaske MD, Foreman MR, Vollmer F (2014) Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9:933–939PubMedCrossRefGoogle Scholar
  4. Bahadır EB, Sezgintürk MK (2015) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120PubMedCrossRefGoogle Scholar
  5. Ban LP, Zhang L, Yan YH, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54PubMedCrossRefGoogle Scholar
  6. Ban LP, Scaloni A, D’Ambrosio C, Zhang L, Yan YH, Pelosi P (2003) Biochemical characterisation and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 60:390–400PubMedCrossRefGoogle Scholar
  7. Bartoschik T, Galinec S, Kleusch C, Walkiewicz K, Breitsprecher D, Weigert S, Muller YA, You C, Piehler J, Vercruysse T, Daelemans D, Tschammer N (2018) Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale thermophoresis. Sci Rep 8:4977PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bennett JP Jr, Snyder SH (1975) Stereospecific binding of d-lysergic acid diethylamide (LSD) to brain membranes: relationship to serotonin receptors. Brain Res 94:523–544PubMedCrossRefGoogle Scholar
  9. Bergström G, Mandenius C-F (2011) Orientation and capturing of antibody affinity ligands: applications to surface plasmon resonance biochips. Sensors and Actuators B Chem 158:265–270CrossRefGoogle Scholar
  10. Beynon RJ, Veggerby C, Payne CE, Robertson DH, Gaskell SJ, Humphries RE, Hurst JL (2002) Polymorphism in major urinary proteins: molecular heterogeneity in a wild mouse population. J Chem Ecol 28:1429–1446PubMedCrossRefGoogle Scholar
  11. Bianchet MA, Bains G, Pelosi P, Pevsner J, Snyder SH, Monaco HL, Amzel LM (1996) The three dimensional structure of bovine odorant-binding protein and its mechanism of odor recognition. Nat Struct Biol 3:934–939PubMedCrossRefGoogle Scholar
  12. Bignetti E, Cavaggioni A, Pelosi P, Persaud KC, Sorbi RT, Tirindelli R (1985) Purification and characterization of an odorant binding protein from cow nasal tissue. Eur J Biochem 149:227–231PubMedCrossRefGoogle Scholar
  13. Briand L, Nespoulous C, Perez V, Rémy JJ, Huet JC, Pernollet JC (2000a) Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem 267:3079–3089PubMedCrossRefGoogle Scholar
  14. Briand L, Huet J, Perez V, Lenoir G, Nespoulous C, Boucher Y, Trotier D, Pernollet JC (2000b) Odorant and pheromone binding by aphrodisin, a hamster aphrodisiac protein. FEBS Lett 476:179–185PubMedCrossRefGoogle Scholar
  15. Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2001) Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem 268:752–760PubMedCrossRefGoogle Scholar
  16. Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2002a) Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269:4586–4596PubMedCrossRefGoogle Scholar
  17. Briand L, Eloit C, Nespoulous C, Bezirard V, Huet JC, Henry C, Blon F, Trotier D, Pernollet JC (2002b) Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties. Biochemistry 41:7241–7252PubMedCrossRefGoogle Scholar
  18. Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H (2018) Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 47:4781–4859PubMedCrossRefGoogle Scholar
  19. Bruns RF, Lawson-Wendling K, Pugsley TA (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem 132:74–81PubMedCrossRefGoogle Scholar
  20. Burova TV, Choiset Y, Jankowski CK, Haertlé T (1999) Conformational stability and binding properties of porcine odorant binding protein. Biochemistry 38:15043–15051PubMedCrossRefGoogle Scholar
  21. Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084PubMedCrossRefGoogle Scholar
  22. Campanacci V, Lartigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 29:5069–5074CrossRefGoogle Scholar
  23. Cavaggioni A, Findlay JB, Tirindelli R (1990) Ligand binding characteristics of homologous rat and mouse urinary proteins and pyrazine-binding protein of calf. Comp Biochem Physiol B 96:513–520PubMedCrossRefGoogle Scholar
  24. Dal Monte M, Centini M, Anselmi C, Pelosi P (1993) Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Senses 18:713–721CrossRefGoogle Scholar
  25. Damberger F, Nikonova L, Horst R, Peng G, Leal WS, Wuthrich K (2000) NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci 9:1038–1041PubMedPubMedCentralCrossRefGoogle Scholar
  26. Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, D'Auria S (2013) Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron 41:328–334PubMedCrossRefGoogle Scholar
  27. D'Innocenzo B, Salzano AM, D'Ambrosio C, Gazzano A, Niccolini A, Sorce C, Dani FR, Scaloni A, Pelosi P (2006) Secretory proteins as potential semiochemical carriers in the horse. Biochemistry 45:13418–13428PubMedCrossRefGoogle Scholar
  28. Dohlman HG, Caron MG, Lefkowitz RJ (1987) Structure and function of the beta 2-adrenergic receptor-homology with rhodopsin. Kidney Int Suppl 23:S2–S13PubMedGoogle Scholar
  29. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fayad S, Morin P, Nehmé R (2017) Use of chromatographic and electrophoretic tools for assaying elastase, collagenase, hyaluronidase, and tyrosinase activity. J Chromatogr A 1529:1–28PubMedCrossRefGoogle Scholar
  31. Ferrari E, Lodi T, Sorbi RT, Tirindelli R, Cavaggioni A, Spisni A (1997) Expression of a lipocalin in Pichia pastoris: secretion, purification and binding activity of a recombinant mouse major urinary protein. FEBS Lett 401:73–77PubMedCrossRefGoogle Scholar
  32. Finberg JPM, Schwartz M, Jeries R, Badarny S, Nakhleh MK, Abu Daoud E, Ayubkhanov Y, Aboud-Hawa M, Broza YY, Haick H (2018) Sensor Array for detection of early stage Parkinson's disease before medication. ACS Chem Neurosci.  https://doi.org/10.1021/acschemneuro.8b00245
  33. Fisher E, Zhao Y, Richardson R, Janik M, Buell AK, Aigbirhio FI, Tóth G (2017) Detection and characterization of small molecule interactions with fibrillar protein aggregates using microscale thermophoresis. ACS Chem Neurosci 8(9):2088–2095PubMedCrossRefGoogle Scholar
  34. Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24PubMedCrossRefGoogle Scholar
  35. Gao Y, Or S, Toop A, Wheeldon I (2017) DNA nanostructure sequence-dependent binding of organophosphates. Langmuir 33:2033–2040PubMedCrossRefGoogle Scholar
  36. Gardner J, Bartlett PN, eds. (2013) Sensors and sensory systems for an electronic nose. Springer Science & Business MediaGoogle Scholar
  37. Gardner JW, Persaud KC, eds. (2001) Electronic noses and olfaction 2000. Proceedings of the 7th International Symposium On Olfaction And Electronic Noses, Brighton, UKGoogle Scholar
  38. Gisbert Quilis N, Lequeux M, Venugopalan P, Khan I, Knoll W, Boujday S, Lamy de la Chapelle M, Dostalek J (2018) Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 10:10268–10276PubMedCrossRefGoogle Scholar
  39. Hérent MF, Collin S, Pelosi P (1995) Affinities of nutty and green-smelling compounds to odorant-binding proteins. Chem Senses 20:601–610PubMedCrossRefGoogle Scholar
  40. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493PubMedCrossRefGoogle Scholar
  41. Hoß SG, Bendas G (2017) Mass-sensitive biosensor systems to determine the membrane interaction of Analytes. Methods Mol Biol 1520:145–157PubMedCrossRefGoogle Scholar
  42. Hotel O, Poli JP, Mer-Calfati C, Scorsone E, Saada S (2017) SAW Sensor’s frequency shift characterization for odor recognition and concentration estimation. IEEE Sensors J 17:7011–7018CrossRefGoogle Scholar
  43. Hulme EC, Birdsall NJM (1992) Strategy and tactics in receptor-binding studies. In: Hulme EC (ed) Receptor–ligand interactions—a practical approach. IRL Press, Oxford, pp 63–176Google Scholar
  44. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237PubMedPubMedCentralCrossRefGoogle Scholar
  45. Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, Turillazzi S, Felicioli A, Pelosi P (2011) Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. J Proteome Res 10:3439–3449PubMedCrossRefGoogle Scholar
  46. Iovinella I, Ban L, Song L, Pelosi P, Dani FR (2016) Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. Insect Biochem Mol Biol 78:58–68PubMedCrossRefGoogle Scholar
  47. Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-pick type C2 protein mediating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jensen EV, DeSombre ER (1973) Estrogen-receptor interaction. Science 182:126–134PubMedCrossRefGoogle Scholar
  49. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277PubMedCrossRefGoogle Scholar
  50. Kastritis PL, Bonvin AM (2012) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:20120835PubMedCrossRefGoogle Scholar
  51. Kobilka B, Gether U, Seifert R, Lin S, Ghanouni P (1998) Examination of ligand-induced conformational changes in the beta2 adrenergic receptor. Life Sci 62:1509–1512PubMedCrossRefGoogle Scholar
  52. Kotlowski C, Larisika M, Guerin PM, Kleber C, Kröber T, Mastrogiacomo R, Nowak C, Schutz S, Schwaighofer A, Knoll W (2018) Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sensors Actuators B Chem 256:564–572CrossRefGoogle Scholar
  53. Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H (2015) Detection of cancer through exhaled breath: a systematic review. Oncotarget 6:38643–38657PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790CrossRefPubMedGoogle Scholar
  55. Lang X, Gao Y, Wheeldon I (2018) Quantifying small molecule binding interactions with DNA nanostructures. Methods Mol Biol 1814:145–155PubMedCrossRefGoogle Scholar
  56. Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W (2015) Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew Chem Int Ed Engl 54:13245–13248PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098PubMedCrossRefGoogle Scholar
  58. Lartigue A, Gruez A, Spinelli S, Riviere S, Brossut R, Tegoni M, Cambillau C (2003) The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem 278(32):30213–30218PubMedCrossRefGoogle Scholar
  59. Leal GM, Leal WS (2015) Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti. F1000Res 3:305PubMedCentralGoogle Scholar
  60. Leal WS, Chen AM, Erickson ML (2005a) Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein. J Chem Ecol 31:2493–2499PubMedCrossRefGoogle Scholar
  61. Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005b) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li X, Saha P, Li J, Blobel G, Pfeffer SR (2016) Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A 113:10079–10084PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lin KH, Lu WJ, Wang SH, Fong TH, Chou DS, Chang CC, Chang NC, Chiang YC, Huang SY, Sheu JR (2014) Characteristics of endogenous γ-amino-butyric acid (GABA) in human platelets: functional studies of a novel collagen glycoprotein VI inhibitor. J Mol Med 92:603–614PubMedCrossRefGoogle Scholar
  64. Liu J (2005) Systematic studies of protein immobilization by surface plasmon field-enhanced fluorescence spectroscopy, PhD Thesis, University of Mainz, GermanyGoogle Scholar
  65. Liu Q, Wang H, Li H, Zhang J, Zhuang S, Zhang F, Hsia KJ, Wang P (2013) Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosens Bioelectron 40:174–179PubMedCrossRefGoogle Scholar
  66. Liu H, Zhao XF, Fu L, Han YY, Chen J, Lu YY (2017) BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci Rep 7:15894PubMedPubMedCentralCrossRefGoogle Scholar
  67. Löbel D, Marchese S, Krieger J, Pelosi P, Breer H (1998) Subtypes of odorant-binding proteins--heterologous expression and ligand binding. Eur J Biochem 254(318):324Google Scholar
  68. Löbel D, Strotmann J, Jacob M, Breer H (2001) Identification of a third rat odorant-binding protein (OBP3). Chem Senses 26:673–680PubMedCrossRefGoogle Scholar
  69. Lu Y, Li H, Zhuang S, Zhang D, Zhang Q, Zhou J, Dong S, Liu Q, Wang P (2014) Olfactory biosensor using odorant-binding proteins from honeybee: ligands of floral odors and pheromones detection by electrochemical impedance. Sensors Actuators B Chem 193:420–427CrossRefGoogle Scholar
  70. Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q (2015) Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 67:662–669PubMedCrossRefGoogle Scholar
  71. Lu Y, Zhang D, Zhang Q, Huang Y, Luo S, Yao Y, Li S, Liu Q (2016) Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection. Biosens Bioelectron 79:251–257PubMedCrossRefGoogle Scholar
  72. Ma W, Yang L, He L (2018) Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 8:147–152PubMedPubMedCentralCrossRefGoogle Scholar
  73. Maibeche–Coisne M, Sobrio F, Delavnay T, Lettere M, Dubroca J, Jacquin–Joly E, Nagnam–Le Meillour P (1997) Pheromone binding proteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochem Mol Biol 27:213–221CrossRefGoogle Scholar
  74. Maida R, Ziegelberger G, Kaissling KE (2003) Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B 173:565–573PubMedCrossRefGoogle Scholar
  75. Manai R, Scorsone E, Rousseau L, Ghassemi F, Possas Abreu M, Lissorgues G, Tremillon N, Ginisty H, Arnault JC, Tuccori E, Bernabei M, Cali K, Persaud KC, Bergonzo P (2014) Grafting odorant binding proteins on diamond bio-MEMS. Biosens Bioelectron 60:311–317PubMedCrossRefGoogle Scholar
  76. Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P (1998) Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252:563–568PubMedCrossRefGoogle Scholar
  77. Marie AD, Veggerby C, Robertson DHL, Gaskell SJ, Hubbard SJ, Martinsen L, Hurst JL, Beynon RJ (2001) Effect of polymorphisms on ligand binding by mouse major urinary proteins. Protein Sci 10:411–417CrossRefGoogle Scholar
  78. Mastrogiacomo R, D’Ambrosio C, Niccolini A, Serra A, Gazzano A, Scaloni A, Pelosi P (2014a) An odorant-binding protein is abundantly expressed in the nose and in the seminal fluid of the rabbit. PLoS One 9:e111932PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mastrogiacomo R, Iovinella I, Napolitano E (2014b) New fluorescent probes for ligand-binding assays of odorant-binding proteins. Biochem Biophys Res Commun 446:137–142PubMedCrossRefGoogle Scholar
  80. McAfee A, Chapman A, Iovinella I, Gallagher-Kurtzke Y, Collins TF, Higo H, Madilao LL, Pelosi P, Foster LJ (2018) A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Sci Rep 8:5719PubMedPubMedCentralCrossRefGoogle Scholar
  81. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374PubMedCrossRefGoogle Scholar
  82. Mueller AM, Breitsprecher D, Duhr S, Baaske P, Schubert T, Längst G (2017) Microscale Thermophoresis: a rapid and precise method to quantify protein-nucleic acid interactions in solution. Methods Mol Biol 1654:151–164PubMedCrossRefGoogle Scholar
  83. Mulla MY, Tuccori E, Magliulo M, Lattanzi G, Palazzo G, Persaud K, Torsi L (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nagnan-Le Meillour P, Huet JC, Maibeche M, Pernollet JC, Descoins C (1996) Purification and characterization of multiple forms of odorant/pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem Mol Biol 26:59–67PubMedCrossRefGoogle Scholar
  85. Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, François MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Senses 25:541–553PubMedCrossRefGoogle Scholar
  86. Ning Y, Gao Q, Zhang X, Wei K, Chen L (2016) A graphene oxide-based sensing platform for the determination of methicillin-resistant Staphylococcus aureus based on strand-displacement polymerization recycling and synchronous fluorescent signal amplification. J Biomol Screen 21:851–857PubMedCrossRefGoogle Scholar
  87. O'Shannessy DJ, Winzor DJ (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology. Anal Biochem 236:275–283PubMedCrossRefGoogle Scholar
  88. Pang X, Zhou H (2017) Rate constants and mechanisms of protein-ligand binding. Annu Rev Biophys 46:105–130PubMedPubMedCentralCrossRefGoogle Scholar
  89. Paolini S, Tanfani F, Fini C, Bertoli E, Pelosi P (1999) Porcine odorant-binding protein: structural stability and ligand affinities measured by fourier-transform infrared spectroscopy and fluorescence spectroscopy. Biochim Biophys Acta 1431:179–188PubMedCrossRefGoogle Scholar
  90. Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29:199–228PubMedCrossRefGoogle Scholar
  91. Pelosi P, Tirindelli R (1989) Structure/activity studies and characterization of an odorant-binding protein. In: Brand JG, Teeter JH, Cagan RH, Kare MR (eds) Chemical senses. Vol. 1. Receptor events and transduction in taste and olfaction. Marcel Dekker, Inc., New York, pp 207–226Google Scholar
  92. Pelosi P, Pisanelli AM, Baldaccini NE, Gagliardo A (1981) Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem Senses 6:77–85CrossRefGoogle Scholar
  93. Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pelosi P, Zhou J-J, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676PubMedCrossRefGoogle Scholar
  95. Pelosi P, Iovinella I, Felicioli A, Dani FR (2014a) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC (2014b) Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 98:61–70PubMedCrossRefGoogle Scholar
  97. Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2018) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 93:184–200PubMedCrossRefGoogle Scholar
  98. Persaud KC, Marco S, Gutierrez-Galvez A (eds) (2013) Neuromorphic olfaction (frontiers in neuroengineering series). CRC Press, Boca RatonGoogle Scholar
  99. Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361PubMedCrossRefGoogle Scholar
  100. Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH (1985) Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci U S A 82:3050–3054PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding J Biol Chem 265:6118–6125PubMedGoogle Scholar
  102. Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. Methods Mol Biol 503:65–88PubMedCrossRefGoogle Scholar
  103. Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A, Iatrou K, Zhou JJ, Krieger J, Pelosi P (2011) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68:1799–1813PubMedCrossRefGoogle Scholar
  104. Reiner-Rozman C, Kotlowski C, Knoll W (2016) Electronic Biosensing with functionalized rGO FETs. Biosensors (Basel) 6:17CrossRefGoogle Scholar
  105. Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151PubMedCrossRefGoogle Scholar
  106. Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315PubMedCrossRefGoogle Scholar
  107. Simantov R, Snyder SH (1977) The opiate receptor. Biochem Soc Trans 5:62–65PubMedCrossRefGoogle Scholar
  108. Snyder SH (1979) Receptors, neurotransmitters and drug responses. N Engl J Med 300:465–472PubMedCrossRefGoogle Scholar
  109. Snyder SH (2004) Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 47(Suppl 1):274–285PubMedCrossRefGoogle Scholar
  110. Snyder SH, Childers SR (1979) Opiate receptors and opioid peptides. Annu Rev Neurosci 2:35–64PubMedCrossRefGoogle Scholar
  111. Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C (2012) Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol 42:41–50PubMedCrossRefGoogle Scholar
  112. Stites WE, Byrne MP, Aviv J, Kaplan M, Curtis PM (1995) Instrumentation for automated determination of protein stability. Anal Biochem 227:112–122PubMedCrossRefGoogle Scholar
  113. Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD (2016) Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 173:3028–3037PubMedCrossRefGoogle Scholar
  114. Sun YF, De Biasio F, Qiao HL, Iovinella I, Yang SX, Ling Y, Riviello L, Battaglia D, Falabella P, Yang XL, Pelosi P (2013) Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-ß-farnesene and structural analogues. PLoS One 7:e32759CrossRefGoogle Scholar
  115. Szunerits S, Boukherroub R (2018) Graphene-based biosensors. Interface Focus 8:20160132PubMedCrossRefGoogle Scholar
  116. Takahashi S, Kishi K, Hiraga R, Hayashi K, Mamada Y, Oshige M, Katsura S (2018) A new method for immobilization of his-tagged proteins with the application of low-frequency AC electric field. Sensors (Basel) 18:E784CrossRefGoogle Scholar
  117. Tcatchoff L, Nespoulous C, Pernollet JC, Briand L (2006) A single lysyl residue defines the binding specificity of a human odorant-binding protein for aldehydes. FEBS Lett 580:2102–2108PubMedCrossRefGoogle Scholar
  118. Tegoni M, Ramoni R, Bignetti E, Spinelli S, Cambillau C (1996) Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol 3:863–867PubMedCrossRefGoogle Scholar
  119. Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, Ramoni R, Cambillau C (2000) Mammalian odorant binding proteins. Biochim Biophys Acta 1482:229–240PubMedCrossRefGoogle Scholar
  120. Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264PubMedCrossRefGoogle Scholar
  121. Tisch U, Haick H (2010) Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng 26:171–179CrossRefGoogle Scholar
  122. Topazzini A, Pelosi P, Pasqualetto PL, Baldaccini NE (1985) Specificity of a pyrazine binding protein from cow olfactory mucosa. Chem Senses 10:45–49CrossRefGoogle Scholar
  123. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196PubMedCrossRefGoogle Scholar
  124. Vareiro MM, Liu J, Knoll W, Zak K, Williams D, Jenkins AT (2005) Surface plasmon fluorescence measurements of human chorionic gonadotrophin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal Chem 77:2426–2431PubMedCrossRefGoogle Scholar
  125. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163PubMedCrossRefGoogle Scholar
  126. Wang Y, Huang CJ, Jonas U, Wei T, Dostalek J, Knoll W (2009) Biosensor based on hydrogel optical waveguide spectroscopy. Biosens Bioelectron 25:1663–1668PubMedCrossRefGoogle Scholar
  127. Wang B, Guan L, Zhong T, Li K, Yin J, Cao Y (2013) Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae). PLoS One 8:e84795PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wang S, Dong Y, Liang X (2018) Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 109:1–7PubMedCrossRefGoogle Scholar
  129. Wei Y, Brandazza A, Pelosi P (2008) Binding of Polyclycic aromatic hydrocarbons to mutants of odorant-binding protein: a first step towards biosensors for environmental monitoring. Biochim Biophys Acta 1784:666–671PubMedCrossRefGoogle Scholar
  130. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100PubMedCrossRefGoogle Scholar
  131. Xu F, Zheng G, Yu F, Kuennemann E, Textor M, Knoll W (2005) Combined affinity and catalaytic biosensor: in-situ enzymatic activity monitoring of surface bound enzymes. J Am Chem Soc 127:13084–13085PubMedCrossRefGoogle Scholar
  132. Xu W, Xu X, Leal WS, Ames JB (2011) Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding. Biochem Biophys Res Commun 404:335–338PubMedCrossRefGoogle Scholar
  133. Yoon JW, Lee JH (2017) Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 17:3537–3557PubMedCrossRefGoogle Scholar
  134. Zhang S, Chen L-Z, Gu S-H, Cui J-J, Gao X-W, Zhang Y-J, Guo Y-Y (2011) Binding characterization of recombinant odorant-binding proteins from the parasitic wasp, Microplitis mediator (Hymenoptera: Braconidae). J Chem Ecol 37:189–194PubMedCrossRefGoogle Scholar
  135. Zheng Y, Wang SN, Peng Y, Lu ZY, Shan S, Yang YQ, Li RJ, Zhang YJ, Guo YY (2017) Functional characterization of a Niemann-pick type C2 protein in the wasp Microplitis mediator. Insect Sci.  https://doi.org/10.1111/1744-7917.12473 CrossRefGoogle Scholar
  136. Zhou J-J, Zhang G-A, Huang W, Birkett MA, Field LM, Pickett JA, Pelosi P (2004) Revisiting odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett 558:23–26PubMedCrossRefGoogle Scholar
  137. Zhou J-J, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545PubMedCrossRefGoogle Scholar
  138. Zhou XH, Ban LP, Iovinella I, Zhao LJ, Gao Q, Felicioli A, Sagona S, Pieraccini G, Pelosi P, Zhang L, Dani FR (2013) Diversity, abundance, and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis. Biol Chem 394:43–54PubMedCrossRefGoogle Scholar
  139. Zhu J, Ban L, Song LM, Liu Y, Pelosi P, Wang G (2016) General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol 72:10–19PubMedCrossRefGoogle Scholar
  140. Zhu J, Arena S, Spinelli S, Liu D, Zhang G, Wei R, Cambillau C, Scaloni A, Wang G, Pelosi P (2017) Reverse chemical ecology: olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc Natl Acad Sci U S A 114:E9802–E9810PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, Wang G (2018) Niemann-pick C2 proteins: a new function for an old family. Front Physiol 9:52PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ziegelberger G (1995) Redox shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232:706–711PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Austrian Institute of Technology GmbH, Biosensor TechnologiesTullnAustria

Personalised recommendations