Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8307–8318 | Cite as

Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus

  • Wen-Tao Yang
  • Qiong-Yan Li
  • Emad Beshir Ata
  • Yan-Long Jiang
  • Hai-Bin Huang
  • Chun-Wei Shi
  • Jian-Zhong Wang
  • Guan Wang
  • Yuan-Huan Kang
  • Jing Liu
  • Gui-Lian Yang
  • Chun-Feng Wang
Biotechnological products and process engineering

Abstract

The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine.

Keywords

L. plantarum TGEV S protein DCpep Mucosal immune response 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2017YFD0501000, 2017YFD0501200), National Natural Science Foundation of China (31672528), Science and Technology Development Program of Jilin Province (20160519011JH, 20170204034NY, 20180520037JH), Special Funds for Industrial Innovation of Jilin Province (2016C063), and “Thirteen Fiveyear Plan” for Sci & Tech Research Program of Jilin Education Department of People’s Republic of China (JJKH20170318KJ).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

All applicable international and national guidelines for the care and use of mice were followed.

References

  1. Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97(10):5516–5521CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cai R, Jiang Y, Yang W, Yang W, Shi S, Shi C, Hu J, Gu W, Ye L, Zhou F, Gong Q, Han W, Yang G, Wang C (2016) Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS. J Microbiol Biotechnol 26(2):421–431.  https://doi.org/10.4014/jmb.1509.09030 CrossRefPubMedGoogle Scholar
  3. Chattha KS, Roth JA, Saif LJ (2015) Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci 3:375–395.  https://doi.org/10.1146/annurev-animal-022114-111038 CrossRefPubMedGoogle Scholar
  4. Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zuniga S (2013) Alphacoronavirus protein 7 modulates host innate immune response. J Virol 87(17):9754–9767.  https://doi.org/10.1128/jvi.01032-13 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Doyle LP, Hutchings LM (1946) A transmissible gastroenteritis in pigs. J Am Vet Med Assoc 108:257–259PubMedGoogle Scholar
  6. Gelhaus S, Thaa B, Eschke K, Veit M, Schwegmann-Wessels C (2014) Palmitoylation of the alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction. Virology 464-465:397–405.  https://doi.org/10.1016/j.virol.2014.07.035 CrossRefPubMedGoogle Scholar
  7. Gerdts V, Zakhartchouk A (2017) Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet Microbiol 206:45–51.  https://doi.org/10.1016/j.vetmic.2016.11.029 CrossRefPubMedGoogle Scholar
  8. Horton RE, Vidarsson G (2013) Antibodies and their receptors: different potential roles in mucosal defense. Front Immunol 4:200.  https://doi.org/10.3389/fimmu.2013.00200 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Huang KY, Yang GL, Jin YB, Liu J, Chen HL, Wang PB, Jiang YL, Shi CW, Huang HB, Wang JZ, Wang G, Kang YH, Yang WT, Wang CF (2018) Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res 247:84–93.  https://doi.org/10.1016/j.virusres.2017.12.011 CrossRefPubMedGoogle Scholar
  10. Jiang X, Hou X, Tang L, Jiang Y, Ma G, Li Y (2016) A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection. Appl Microbiol Biotechnol 100(17):7457–7469.  https://doi.org/10.1007/s00253-016-7424-9 CrossRefPubMedGoogle Scholar
  11. Jiang Y, Ye L, Cui Y, Yang G, Yang W, Wang J, Hu J, Gu W, Shi C, Huang H, Wang C (2017) Effects of Lactobacillus rhamnosus GG on the maturation and differentiation of dendritic cells in rotavirus-infected mice. Benef Microbes 8(4):645–656.  https://doi.org/10.3920/bm2016.0157 CrossRefPubMedGoogle Scholar
  12. Kathania M, Zadeh M, Lightfoot YL, Roman RM, Sahay B, Abbott JR, Mohamadzadeh M (2013) Colonic immune stimulation by targeted oral vaccine. PLoS One 8(1):e55143.  https://doi.org/10.1371/journal.pone.0055143 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kaur M, Singh H, Jangra M, Kaur L, Jaswal P, Dureja C, Nandanwar H, Chaudhuri SR, Raje M, Mishra S, Pinnaka AK (2017) Lactic acid bacteria isolated from yak milk show probiotic potential. Appl Microbiol Biotechnol 101:7635–7652.  https://doi.org/10.1007/s00253-017-8473-4 CrossRefPubMedGoogle Scholar
  14. Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, Adachi Y, Fukudome S, Takahashi Y, Hachimura S (2014) Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One 9(1):e86416.  https://doi.org/10.1371/journal.pone.0086416 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Landete JM, Langa S, Revilla C, Margolles A, Medina M, Arques JL (2015) Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 99(16):6865–6877.  https://doi.org/10.1007/s00253-015-6770-3 CrossRefPubMedGoogle Scholar
  16. Lee YK, Mukasa R, Hatton RD, Weaver CT (2009) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21(3):274–280.  https://doi.org/10.1016/j.coi.2009.05.021 CrossRefPubMedGoogle Scholar
  17. Lin CM, Gao X, Oka T, Vlasova AN, Esseili MA, Wang Q, Saif LJ (2015) Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. J Virol 89(6):3332–3342.  https://doi.org/10.1128/jvi.03196-14 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Maldonado-Lopez R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13(5):275–282.  https://doi.org/10.1006/smim.2001.0323 CrossRefPubMedGoogle Scholar
  19. Meng F, Ren Y, Suo S, Sun X, Li X, Li P, Yang W, Li G, Li L, Schwegmann-Wessels C, Herrler G, Ren X (2013) Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing spike genes from porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus. PLoS One 8(3):e57468.  https://doi.org/10.1371/journal.pone.0057468 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL, Bavari S, Klaenhammer TR (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102(8):2880–2885.  https://doi.org/10.1073/pnas.0500098102 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, Klaenhammer TR (2009) Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc Natl Acad Sci U S A 106(11):4331–4336.  https://doi.org/10.1073/pnas.0900029106 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173.  https://doi.org/10.1146/annurev.iy.07.040189.001045 CrossRefPubMedGoogle Scholar
  23. Mou C, Zhu L, Xing X, Lin J, Yang Q (2016) Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antivir Res 131:74–84.  https://doi.org/10.1016/j.antiviral.2016.02.003 CrossRefPubMedGoogle Scholar
  24. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72(1):269–275.  https://doi.org/10.1128/aem.72.1.269-275.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nguyen VP, Hogue BG (1997) Protein interactions during coronavirus assembly. J Virol 71(12):9278–9284PubMedPubMedCentralGoogle Scholar
  26. Owen JL, Sahay B, Mohamadzadeh M (2013) New generation of oral mucosal vaccines targeting dendritic cells. Curr Opin Chem Biol 17(6):918–924.  https://doi.org/10.1016/j.cbpa.2013.06.013 CrossRefPubMedGoogle Scholar
  27. Posman KM, DeRito CM, Madsen EL (2017) Benzene degradation by a Variovorax species within a coal tar-contaminated groundwater microbial community. Appl Environ Microbiol 83(4):e02658–e02616.  https://doi.org/10.1128/aem.02658-16 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM (2012) Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8(8):e1002859.  https://doi.org/10.1371/journal.ppat.1002859 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M (2017) Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 101(1):35–45.  https://doi.org/10.1007/s00253-016-8005-7 CrossRefPubMedGoogle Scholar
  30. Sanchez CM, Izeta A, Sanchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Duran J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73(9):7607–7618PubMedPubMedCentralGoogle Scholar
  31. Shi SH, Yang WT, Yang GL, Cong YL, Huang HB, Wang Q, Cai RP, Ye LP, Hu JT, Zhou JY, Wang CF, Li Y (2014) Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice. Virology 464-465:166–176.  https://doi.org/10.1016/j.virol.2014.07.011 CrossRefPubMedGoogle Scholar
  32. Shi SH, Yang WT, Yang GL, Zhang XK, Liu YY, Zhang LJ, Ye LP, Hu JT, Xing X, Qi C, Li Y, Wang CF (2016) Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection. Virus Res 211:46–57.  https://doi.org/10.1016/j.virusres.2015.09.005 CrossRefPubMedGoogle Scholar
  33. Sorvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449.  https://doi.org/10.1099/mic.0.28084-0 CrossRefPubMedGoogle Scholar
  34. Subramaniam S, Cao D, Tian D, Cao QM, Overend C, Yugo DM, Matzinger SR, Rogers AJ, Heffron CL, Catanzaro N, Kenney SP, Opriessnig T, Huang YW, Labarque G, Wu SQ, Meng XJ (2017) Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs. Virus Res 227:212–219.  https://doi.org/10.1016/j.virusres.2016.10.007 CrossRefPubMedGoogle Scholar
  35. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec 5(6):352–366.  https://doi.org/10.1002/tcr.20061 CrossRefPubMedGoogle Scholar
  36. Tian L, Zhao P, Ma B, Guo G, Sun Y, Xing M (2014) Cloning, expression and antiviral bioactivity of red-crowned crane interferon-alpha. Gene 544(1):49–55.  https://doi.org/10.1016/j.gene.2014.04.036 CrossRefPubMedGoogle Scholar
  37. Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, Rottier PJ (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBOJ 15(8):2020–2028CrossRefGoogle Scholar
  38. Voets MT, Pensaert M, Rondhuis PR (1980) Vaccination of pregnant sows against transmissible gastroenteritis with two attenuated virus strains and different inoculation routes. Vet Q 2(4):211–219.  https://doi.org/10.1080/01652176.1980.9693783 CrossRefPubMedGoogle Scholar
  39. Wang C, Chen J, Shi H, Qiu HJ, Xue F, Liu S, Liu C, Zhu Y, Almazan F, Enjuanes L, Feng L (2010) Rapid differentiation of vaccine strain and Chinese field strains of transmissible gastroenteritis virus by restriction fragment length polymorphism of the N gene. Virus Genes 41(1):47–58.  https://doi.org/10.1007/s11262-010-0481-8 CrossRefPubMedGoogle Scholar
  40. Wang X, Wang Z, Xu H, Xiang B, Dang R, Yang Z (2016) Orally administrated whole yeast vaccine against porcine epidemic diarrhea virus induced high levels of IgA response in mice and piglets. Viral Immunol 29(9):526–531.  https://doi.org/10.1089/vim.2016.0067 CrossRefPubMedGoogle Scholar
  41. Wang X, Wang L, Huang X, Ma S, Yu M, Shi W, Qiao X, Tang L, Xu Y, Li Y (2017) Oral delivery of probiotics expressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen: a promising vaccine strategy against PEDV. Viruses 9(11).  https://doi.org/10.3390/v9110312 CrossRefPubMedCentralGoogle Scholar
  42. Wanker E, Leer RJ, Pouwels PH, Schwab H (1995) Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei. Appl Microbiol Biotechnol 43(2):297–303CrossRefPubMedGoogle Scholar
  43. Xia L, Dai L, Yu Q, Yang Q (2017a) Persistent transmissible gastroenteritis virus infection enhances enterotoxigenic Escherichia coli K88 adhesion by promoting epithelial-mesenchymal transition in intestinal epithelial cells. J Virol 91(21):e01256–e01217.  https://doi.org/10.1128/jvi.01256-17 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xia L, Dai L, Zhu L, Hu W, Yang Q (2017b) Proteomic analysis of IPEC-J2 cells in response to coinfection by porcine transmissible gastroenteritis virus and enterotoxigenic Escherichia coli K88. Proteomics Clin Appl 11(11–12).  https://doi.org/10.1002/prca.201600137 CrossRefGoogle Scholar
  45. Xu YG, Guan XT, Liu ZM, Tian CY, Cui LC (2015) Immunogenicity in swine of orally administered recombinant Lactobacillus plantarum expressing classical swine fever virus E2 protein in conjunction with thymosin alpha-1 as an adjuvant. Appl Environ Microbiol 81(11):3745–3752.  https://doi.org/10.1128/aem.00127-15 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yang WT, Shi SH, Yang GL, Jiang YL, Zhao L, Li Y, Wang CF (2016) Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum. Sci Rep 6:39665.  https://doi.org/10.1038/srep39665 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yang G, Yao J, Yang W, Jiang Y, Du J, Huang H, Gu W, Hu J, Ye L, Shi C, Shan B, Wang C (2017a) Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide. Vet Parasitol 236:7–13.  https://doi.org/10.1016/j.vetpar.2017.01.023 CrossRefPubMedGoogle Scholar
  48. Yang WT, Yang GL, Wang Q, Huang HB, Jiang YL, Shi CW, Wang JZ, Huang KY, Jin YB, Wang CF (2017b) Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum. Antivir Res 138:9–21.  https://doi.org/10.1016/j.antiviral.2016.11.025 CrossRefPubMedGoogle Scholar
  49. Yang WT, Yang GL, Yang X, Shonyela SM, Zhao L, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, Zhao JH, Wang CF (2017c) Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl Microbiol Biotechnol 101(23–24):8475–8484.  https://doi.org/10.1007/s00253-017-8600-2 CrossRefPubMedGoogle Scholar
  50. Yu M, Qi R, Chen C, Yin J, Ma S, Shi W, Wu Y, Ge J, Jiang Y, Tang L (2017a) Immunogenicity of recombinant Lactobacillus casei-expressing F4 (K88) fimbrial adhesin FaeG in conjunction with a heat-labile enterotoxin A (LTAK63) and heat-labile enterotoxin B (LTB) of enterotoxigenic Escherichia coli as an oral adjuvant in mice. J Appl Microbiol 122(2):506–515.  https://doi.org/10.1111/jam.13352 CrossRefPubMedGoogle Scholar
  51. Yu M, Wang L, Ma S, Wang X, Wang Y, Xiao Y, Jiang Y, Qiao X, Tang L, Xu Y, Li Y (2017b) Immunogenicity of eGFP-marked recombinant Lactobacillus casei against transmissible gastroenteritis virus and porcine epidemic diarrhea virus. Viruses 9(10).  https://doi.org/10.3390/v9100274 CrossRefPubMedCentralGoogle Scholar
  52. Zhang Q, Shi K, Yoo D (2016a) Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 489:252–268.  https://doi.org/10.1016/j.virol.2015.12.010 CrossRefPubMedGoogle Scholar
  53. Zhang Y, Zhang X, Liao X, Huang X, Cao S, Wen X, Wen Y, Wu R, Liu W (2016b) Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium. Virus Genes 52(3):354–364.  https://doi.org/10.1007/s11262-016-1316-z CrossRefPubMedGoogle Scholar
  54. Zhang X, Zhu Y, Zhu X, Shi H, Chen J, Shi D, Yuan J, Cao L, Liu J, Dong H, Jing Z, Zhang J, Wang X, Feng L (2017) Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerg Microbes Infect 6(8):e74.  https://doi.org/10.1038/emi.2017.62 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Tao Yang
    • 1
  • Qiong-Yan Li
    • 1
  • Emad Beshir Ata
    • 2
  • Yan-Long Jiang
    • 1
  • Hai-Bin Huang
    • 1
  • Chun-Wei Shi
    • 1
  • Jian-Zhong Wang
    • 1
  • Guan Wang
    • 1
  • Yuan-Huan Kang
    • 1
  • Jing Liu
    • 1
  • Gui-Lian Yang
    • 1
  • Chun-Feng Wang
    • 1
  1. 1.College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of EducationJilin Agricultural UniversityChangchunChina
  2. 2.Parasitology and Animal Diseases Department, Veterinary Research DivisionNational Research CentreCairoEgypt

Personalised recommendations