Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8187–8202 | Cite as

Thermostable alpha-glucan phosphorylases: characteristics and industrial applications

  • Zorica Ubiparip
  • Koen Beerens
  • Jorick Franceus
  • Ronny Vercauteren
  • Tom Desmet
Mini-Review

Abstract

α-Glucan phosphorylases (α-GPs) catalyze the reversible phosphorolysis of α-1,4-linked polysaccharides such as glycogen, starch, and maltodextrins, therefore playing a central role in the usage of storage polysaccharides. The discovery of these enzymes and their role in the course of catalytic conversion of glycogen was rewarded with the Nobel Prize in Physiology or Medicine in 1947. Nowadays, however, thermostable representatives attract special attention due to their vast potential in the enzymatic production of diverse carbohydrates and derivatives such as (functional) oligo- and (non-natural) polysaccharides, artificial starch, glycosides, and nucleotide sugars. One of the most recently explored utilizations of α-GPs is their role in the multi-enzymatic process of energy production stored in carbohydrate biobatteries. Regardless of their use, thermostable α-GPs offer significant advantages and facilitated bioprocess design due to their high operational temperatures. Here, we present an overview and comparison of up-to-date characterized thermostable α-GPs with a special focus on their reported biotechnological applications.

Keywords

α-Glucan phosphorylase Thermostability Thermozymes α-d-glucose 1-phosphate Biocatalysis 

Notes

Funding

This study was supported by Flanders Innovation & Entrepreneurship agency (former Agency for Innovation by Science and Technology) (grant number WTO/150852).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Eydallin G, Ball S, Pozueta-Romero J (2006) Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272.  https://doi.org/10.1128/JB.01566-05 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Assaf SA, Yunis AA (1973) Physicochemical and catalytic properties of crystallized human muscle glycogen phosphorylase. Ann N Y Acad Sci 210:139–152.  https://doi.org/10.1111/j.1749-6632.1973.tb47568.x CrossRefPubMedGoogle Scholar
  3. Baba R, Yamamoto K, Kadokawa J (2016) Synthesis of α(1→4)-linked non-natural mannoglucans by α-glucan phosphorylase-catalyzed enzymatic copolymerization. Carbohydr Polym 151:1034–1039.  https://doi.org/10.1016/j.carbpol.2016.06.057 CrossRefPubMedGoogle Scholar
  4. Bae J, Lee DH, Kim D, Cho SJ, Jung EP, Koh S, Kim J, Park BH, Choi Y, Shin HJ, Hong SI, Lee DS (2005) Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 α-glucan phosphorylase. Process Biochem 40:3707–3713.  https://doi.org/10.1016/j.procbio.2005.05.007 CrossRefGoogle Scholar
  5. Becker JU, Wingender-Drissen R, Schiltz E (1983) Purification and properties of phosphorylase from baker’s yeast. Arch Biochem Biophys 225:667–678.  https://doi.org/10.1016/0003-9861(83)90078-4 CrossRefPubMedGoogle Scholar
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhuiyan SH, Abu Rus’d A, Kitaoka M, Hayashi K (2003) Characterization of a hyperthermostable glycogen phosphorylase from Aquifex aeolicus expressed in Escherichia coli. J Mol Catal B Enzym 22:173–180.  https://doi.org/10.1016/S1381-1177(03)00029-8 CrossRefGoogle Scholar
  8. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci 103:5869–5874.  https://doi.org/10.1073/pnas.0510098103 CrossRefPubMedGoogle Scholar
  9. Boeck B, Schinzel R (1996) Purification and characterisation of an α-glucan phosphorylase from the thermophilic bacterium Thermus thermophilus. Eur J Biochem 155:150–155.  https://doi.org/10.1111/j.1432-1033.1996.0150u.x CrossRefGoogle Scholar
  10. Bokor É, Szennyes E, Csupász T, Tóth N, Docsa T, Gergely P, Somsák L (2015) C-(2-deoxy-d-arabino-hex-1-enopyranosyl)-oxadiazoles: synthesis of possible isomers and their evaluation as glycogen phosphorylase inhibitors. Carbohydr Res 412:71–79.  https://doi.org/10.1016/j.carres.2015.04.016 CrossRefPubMedGoogle Scholar
  11. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  12. Brock TD, Brock KM, Belly RT, Weiss RL (2015a) Sulfolobus. In: Huber H, Stetter KO (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–6Google Scholar
  13. Brock TD, Freeze H e, Nobre MF, Trüper HG, Da Costa MS (2015b) Thermus. In: Da Costa MS, Nobre MF, Rainey FA (eds) Bergey’s manual of systematics of archaea and Bacteria. John Wiley & Sons Inc., in association with Bergey’s Manual Trust, New York, pp 1–22Google Scholar
  14. Browner MF, Fletterick RJ (1992) Phosphorylase: a biological transducer. Trends Biochem Sci 17:66–71.  https://doi.org/10.1016/0968-0004(92)90504-3 CrossRefPubMedGoogle Scholar
  15. Bruins ME, Janssen AEM, Boom RM (2001) Thermozymes and their applications. Appl Biochem Biotechnol 90:155–186.  https://doi.org/10.1385/ABAB:90:2:155 CrossRefPubMedGoogle Scholar
  16. Burke J, Hwang PK, Gorin F, Lebo RV, Fletterick R (1987) Introdexon structure of the human gene for the muscle isozyme of glycogen phosphorylase. Proteins Struct Funct Bioinforma 2:177–187.  https://doi.org/10.1002/prot.340020303 CrossRefGoogle Scholar
  17. Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238.  https://doi.org/10.1093/nar/gkn663 CrossRefGoogle Scholar
  18. Chen GS, Segel IH (1968) Purification and properties of glycogen phosphorylase from Escherichia coli. Arch Biochem Biophys 127:175–186.  https://doi.org/10.1016/0003-9861(68)90214-2 CrossRefPubMedGoogle Scholar
  19. Chen S, Liu J, Pei H, Li J, Zhou J, Xiang H (2007) Molecular investigation of a novel thermostable glucan phosphorylase from Thermoanaerobacter tengcongensis. Enzym Microb Technol 41:390–396.  https://doi.org/10.1016/j.enzmictec.2007.03.008 CrossRefGoogle Scholar
  20. Cori CF, Cori GT (1936) Mechanism and formation of hexosemonophosphate in muscle and isolation of a new phosphate ester. Proc Soc Exp Biol Med 34:702–705.  https://doi.org/10.3181/00379727-34-8759P CrossRefGoogle Scholar
  21. Cori GT, Green AA (1943) Crystalline muscle phosphorylase: II. Prosthetic group. J Biol Chem 151:31–38Google Scholar
  22. Cori GT, Colowlck SP, Cori CF (1938) The action of nucleotides in the disruptive phosphorylation of glycogen. J Biol Chem 123:381–389Google Scholar
  23. Cori C, Cori G, Houssay B (1947) The Nobel prize in physiology or medicine 1947. In: Nobelprize.org. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1947/. Accessed 16 May 2018
  24. Cuesta-Seijo JA, Ruzanski C, Krucewicz K, Meier S, Hägglund P, Svensson B, Palcic MM (2017) Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 12:e0175488.  https://doi.org/10.1371/journal.pone.0175488 CrossRefPubMedPubMedCentralGoogle Scholar
  25. De Winter K, Cerdobbel A, Soetaert W, Desmet T (2011) Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures. Process Biochem 46:2074–2078.  https://doi.org/10.1016/j.procbio.2011.08.002 CrossRefGoogle Scholar
  26. DeCastro ME, Rodriguez-Belmonte E, Gonzalez-Siso MR (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol 7:1521.  https://doi.org/10.3389/fmicb.2016.01521 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Díaz-Lobo M, Garcia-Amorós J, Fita I, Velasco D, Guinovart JJ, Ferrer JC (2015) Selective photoregulation of the activity of glycogen synthase and glycogen phosphorylase, two key enzymes in glycogen metabolism. Org Biomol Chem 13:7282–7288.  https://doi.org/10.1039/c5ob00796h CrossRefPubMedGoogle Scholar
  28. Drueckes P, Boeck B, Palm D, Schinzel R (1996) Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Biochemistry 35:6727–6734.  https://doi.org/10.1021/bi951938l CrossRefPubMedGoogle Scholar
  29. Eijsink VGH, GÅseidnes S, Borchert TV, Van Den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30.  https://doi.org/10.1016/j.bioeng.2004.12.003 CrossRefPubMedGoogle Scholar
  30. Evers B, Thiem G (1995) Synthesis of 2-deoxy-maltooligosaccharides with phosphorylase and their degradation with amylases. Starch 47:434–439.  https://doi.org/10.1002/star.19950471107 CrossRefGoogle Scholar
  31. Evers B, Thiem J (1997) Further syntheses employing phosphorylase. Bioorg Med Chem 5:857–863.  https://doi.org/10.1016/S0968-0896(97)00031-X CrossRefPubMedGoogle Scholar
  32. Fiala G, Stetter KO (2015) Pyrococcus. In: Stetter KO, Huber H (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–5Google Scholar
  33. Fujinaka H, Nakamura J, Kobayashi H, Takizawa M, Murase D, Tokimitsu I, Suda T (2007) Glucose 1-phosphate increases active transport of calcium in intestine. Arch Biochem Biophys 460:152–160.  https://doi.org/10.1016/j.abb.2006.09.006 CrossRefPubMedGoogle Scholar
  34. Garg S, Kumar A (2007) Immobilization of starch phosphorylase from seeds of Indian millet (Pennisetum typhoides) variety KB 560. Afr J Biotechnol 6:2715–2720.  https://doi.org/10.5897/AJB2007.000-2434 CrossRefGoogle Scholar
  35. Green AA, Cori GT (1943) Crystalline muscle phosphorylase: I. Preparation, properties, and molecular weight. J Biol Chem 151:21–29Google Scholar
  36. Grießler R, Müller-Fembeck B, D’Auria S, La Cara S, Nidetzky B (1998) Stability and stabilization of α-1,4-D-glucan phosphorylases. In: Ballesteros A, Plou FJ, Iborra JL, Halling PJ (eds) Stability and stabilization of biocatalysts. Cordoba, pp 83–88Google Scholar
  37. Grießler R, D’Auria S, Schinzel R, Tanfani F, Nidetzky B (2000) Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli. Biochem J 346:255–263.  https://doi.org/10.1042/bj3460255 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Grießler R, Psik B, Schwarz A, Nidetzky B (2004) Relationships between structure, function and stability for pyridoxal 5′-phosphate-dependent starch phosphorylase from Corynebacterium callunae as revealed by reversible cofactor dissociation studies. Eur J Biochem 271:3319–3329.  https://doi.org/10.1111/j.1432-1033.2004.04265.x CrossRefPubMedGoogle Scholar
  39. Gültepe N, Salnur S, Hoşsu B, Hisar O (2011) Dietary supplementation with mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata). Aquac Nutr 17:482–487.  https://doi.org/10.1111/j.1365-2095.2010.00824.x CrossRefGoogle Scholar
  40. Hamdan I, Diopoh J (1991) Purification and physicochemical properties of starch phosphorylase from yam (Dioscorea cayenensis). Plant Sci 76:1–7.  https://doi.org/10.1016/0168-9452(91)90211-P CrossRefGoogle Scholar
  41. Hong Y, Wu L, Liu B, Peng C, Sheng D, Ni J, Shen Y (2008) Characterization of a glucan phosphorylase from the thermophilic archaeon Sulfolobus tokodaii strain 7. J Mol Catal B Enzym 54:27–34.  https://doi.org/10.1016/j.molcatb.2007.11.003 CrossRefGoogle Scholar
  42. Hu HY, Gold AM (1975) Kinetics of glycogen phosphorylase a with a series of semisynthetic, branched saccharides. A model for binding of polysaccharide substrates. Biochemistry 14:2224–2230.  https://doi.org/10.1021/bi00681a028 CrossRefPubMedGoogle Scholar
  43. Huber R, Stetter KO (2015) Aquifex. In: Huber R, Stetter KO (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–5Google Scholar
  44. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (2015) Thermotoga. In: Huber R, Stetter KO (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–9Google Scholar
  45. Issa HA, Mendicino J (1973) Role of enzyme-enzyme interactions in the regulation of glycolysis and gluconeogenesis. J Biol Chem 248:685–696.  https://doi.org/10.1111/j.1432-1033.1973.tb03169.x CrossRefPubMedGoogle Scholar
  46. Johnson LN (1992) Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 6:2274–2282.  https://doi.org/10.1096/fasebj.6.6.1544539 CrossRefPubMedGoogle Scholar
  47. Johnson LN, Madsen NB, Mosley J, Wilson KS (1974) The crystal structure of phosphorylase b at 6 Å resolution. J Mol Biol 90:703–706.  https://doi.org/10.1016/0022-2836(74)90534-8 CrossRefPubMedGoogle Scholar
  48. Kadokawa J (2013) Synthesis of non-natural oligosaccharides by α-glucan phosphorylase-catalyzed enzymatic glycosylations using analogue substrates of α-D-glucose 1-phosphate. Trends Glycosci Glycotechnol 25:57–69.  https://doi.org/10.4052/tigg.25.57 CrossRefGoogle Scholar
  49. Kadokawa J (2016) Precision synthesis of functional polysaccharide materials by phosphorylase-catalyzed enzymatic reactions. Polymers (Basel) 8:138.  https://doi.org/10.3390/polym8040138 CrossRefGoogle Scholar
  50. Kadokawa J, Shimohigoshi R, Yamashita K, Yamamoto K (2015) Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate. Org Biomol Chem 13:4336–4343.  https://doi.org/10.1039/C5OB00167F CrossRefPubMedGoogle Scholar
  51. Kadokawa J, Yamashita K, Shimohigoshi R, Yamamoto K (2016) An investigation of enzymatic phosphorolysis of α(1→4)-linked oligo-D-glucosaminides by thermostable α-glucan phosphorylase catalysis. J Org Inorg Chem 2:3.  https://doi.org/10.21767/2472-1123.100010 CrossRefGoogle Scholar
  52. Kasvinsky PJ, Madsen NB, Fletterick RJ, Sygusch J (1978) X ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J Biol Chem 253:1290–1296PubMedGoogle Scholar
  53. Kraak A (1992) Industrial applications of potato starch products. Ind Crop Prod 1:107–112.  https://doi.org/10.1016/0926-6690(92)90007-I CrossRefGoogle Scholar
  54. Kruger NJ, Rees TA (1983) Properties of α-glucan phosphorylase from pea chloroplasts. Phytochemistry 22:1891–1898.  https://doi.org/10.1016/0031-9422(83)80007-7 CrossRefGoogle Scholar
  55. Lee EYC, Braun JJ (1973) Sweet corn phosphorylase: purification and properties. Arch Biochem Biophys 156:276–286.  https://doi.org/10.1016/0003-9861(73)90366-4 CrossRefPubMedGoogle Scholar
  56. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245.  https://doi.org/10.1093/nar/gkw290 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mateyka C, Schnarrenberger C (1988) Purification and properties of mesophyll and bundle sheath cell alpha-glucan phosphorylases from Zea mays L.: equivalence of the enzymes with the cytosol and plastid phosphorylases from spinach. Plant Physiol 86:417–422.  https://doi.org/10.1104/pp.86.2.417 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Maurer HW (2009) Starch in the paper industry. In: Starch, 3rd edn. Elsevier Inc., pp 657–713Google Scholar
  59. Meissner H, Liebl W (1998) Thermotoga maritima maltosyltransferase, a novel type of maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. Eur J Biochem 258:1050–1058.  https://doi.org/10.1046/j.1432-1327.1998.2581050.x CrossRefPubMedGoogle Scholar
  60. Metzger BE, Glaser L, Helmreich E (1968) Purification and properties of frog skeletal muscle phosphorylase. Biochemistry 7:2021–2036.  https://doi.org/10.1021/bi00846a003 CrossRefPubMedGoogle Scholar
  61. Meyer TSM, Miguel ASM, Fernández DER, Ortiz GMD (2015) Biotechnological production of oligosaccharides—applications in the food industry. Food Prod Ind:25–78.  https://doi.org/10.5772/60934 Google Scholar
  62. Mizanur RM, Griffin AKK, Pohl NL (2008) Recombinant production and biochemical characterization of a hyperthermostable α-glucan/maltodextrin phosphorylase from Pyrococcus furiosus. Archaea 2:169–176.  https://doi.org/10.1155/2008/549759 CrossRefPubMedGoogle Scholar
  63. Mnif I, Ghribi D (2016) Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric 96:4310–4320.  https://doi.org/10.1002/jsfa.7759 CrossRefPubMedGoogle Scholar
  64. Mu HH, Yu Y, Wasserman BP, Carman GM (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch Biochem Biophys 388:155–164.  https://doi.org/10.1006/abbi.2000.2267 CrossRefPubMedGoogle Scholar
  65. Mueller M, Nidetzky B (2010) Orthophosphate binding at the dimer interface of Corynebacterium callunae starch phosphorylase: mutational analysis of its role for activity and stability of the enzyme. BMC Biochem 11:8.  https://doi.org/10.1186/1471-2091-11-8 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mueller M, Takemasa R, Schwarz A, Atomi H, Nidetzky B (2009) “Short-chain” α-1,4-glucan phosphorylase having a truncated N-terminal domain: functional expression and characterization of the enzyme from Sulfolobus solfataricus. Biochim Biophys Acta Proteins Proteomics 1794:1709–1714.  https://doi.org/10.1016/j.bbapap.2009.08.006 CrossRefGoogle Scholar
  67. Nahálka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223.  https://doi.org/10.1007/s10295-007-0287-4 CrossRefPubMedGoogle Scholar
  68. Nakano K, Hwang PK, Fletterick RJ (1986) Complete cDNA sequence for rabbit muscle glycogen phosphorylase. FEBS Lett 204:283–287.  https://doi.org/10.1016/0014-5793(86)80829-8 CrossRefPubMedGoogle Scholar
  69. Nakatani H, Tanaka A, Hiromi K (1983) Continuous production of maltooligosaccharides from glucose 1-phosphate by amylase-phosphorylase reactor. J Appl Biochem 5:371–374PubMedGoogle Scholar
  70. Nawaji M, Izawa H, Kaneko Y, Kadokawa JI (2008) Enzymatic synthesis of α-D-xylosylated malto-oligosaccharides by phosphorylase-catalyzed xylosylation. J Carbohydr Chem 27:214–222.  https://doi.org/10.1080/07328300802105340 CrossRefGoogle Scholar
  71. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2015) Geobacillus. In: Logan NA, Vos PD, Dinsdale A (eds) Bergey’s manual of systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–26Google Scholar
  72. Newgard CB, Hwang PK, Fletterick RJ (1989) The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24:69–94.  https://doi.org/10.3109/10409238909082552 CrossRefPubMedGoogle Scholar
  73. Nidetzky B, Weinhäusel A, Haltrich D, Kulbe KD, Schnizel R (1996) Maltodextrin phosphorylase from Escherichia coli: production and application for the synthesis of α-glucose-1-phosphate. Ann N Y Acad Sci 782:208–218.  https://doi.org/10.1111/j.1749-6632.1996.tb40562.x CrossRefPubMedGoogle Scholar
  74. Niemann C, Saenger W, Pfannemüller B (1992) Enzymatic synthesis of low molecular weight amyloses with modified terminal groups. Carbohydr Res 226:119–130.  https://doi.org/10.1016/0008-6215(92)84059-2 CrossRefPubMedGoogle Scholar
  75. Nishida Y, Tamakoshi H, Kitagawa Y, Kobayashi K, Thiem J (2000) A novel bovine β-1,4-galactosyltransferase reaction to yield β-D-galactopyranosyl-(1-3)-linked disaccharides from L-sugars. Angew Chem Int Ed 39:2000–2003.  https://doi.org/10.1002/1521-3773(20000602)39:11<2000::AID-ANIE2000>3.0.CO;2-3 CrossRefGoogle Scholar
  76. Nishimura T, Akiyoshi K (2017) Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 9:e1423.  https://doi.org/10.1002/wnan.1423 CrossRefGoogle Scholar
  77. Noguchi T, Shiba T (1998) Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci Biotechnol Biochem 62:1594–1596.  https://doi.org/10.1271/bbb.62.1594 CrossRefPubMedGoogle Scholar
  78. O’Reilly M, Watson KA, Schinzel R, Palm D, Johnson LN (1997) Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nat Struct Biol 4:405–412.  https://doi.org/10.1038/nsb0597-405 CrossRefPubMedGoogle Scholar
  79. Oluoha U, Ugochukwu EN (1991) Isolation and kinetic properties of phosphorylase from yelow yam tuber (Dioscorea cayenensis). Biol Plant 33:249–261.  https://doi.org/10.1007/BF02885371 CrossRefGoogle Scholar
  80. Palm D, Goerl R, Burger KJ (1985) Evolution of catalytic and regulatory sites in phosphorylases. Nature 313:50–52.  https://doi.org/10.1038/313500a0 CrossRefGoogle Scholar
  81. Palm D, Goerl R, Weidinger G, Zeier R, Fischer B, Schinzel R (1987) E. coli maltodextrin phosphorylase: primary structure and deletion mapping of the C-terminal site. Z Naturforsch C 42:394–400CrossRefPubMedGoogle Scholar
  82. Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EJM (1990) The role of pyridoxal 5′-phosphate in glycogen phosphorylase catalysis. Biochemistry 29:1099–1107.  https://doi.org/10.1021/bi00457a001 CrossRefPubMedGoogle Scholar
  83. Patel S, Goyal A (2011) Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 27:1119–1128.  https://doi.org/10.1007/s11274-010-0558-5 CrossRefGoogle Scholar
  84. Qian X, Sujino K, Otter A, Palcic MM, Hindsgaul O (1999) Chemoenzymatic synthesis of α-(1→3)-gal(NAc)-terminating glycosides of complex tertiary sugar alcohols. J Am Chem Soc 121:12063–12072.  https://doi.org/10.1021/ja993004g CrossRefGoogle Scholar
  85. Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441.  https://doi.org/10.1016/j.carbpol.2009.03.016 CrossRefGoogle Scholar
  86. Rastall RA (2010) Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 1:305–339.  https://doi.org/10.1146/annurev.food.080708.100746 CrossRefPubMedGoogle Scholar
  87. Rath VL, Hwang PK, Fletterick RJ (1992) Purification and crystallization of glycogen phosphorylase from Saccharomyces cerevisiae. J Mol Biol 225:1027–1034.  https://doi.org/10.1016/0022-2836(92)90102-P CrossRefPubMedGoogle Scholar
  88. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  89. Ronchera-Oms CL, Jiménez NV, Peidro J (1995) Stability of parenteral nutrition admixtures containing organic phosphates. Clin Nutr 14:373–380.  https://doi.org/10.1016/S0261-5614(95)80055-7 CrossRefPubMedGoogle Scholar
  90. Sambandam T, Gunasekaran M, Dugg S (1987) Purification and properties of phosphorylase from Phymatotrichum omnivorum. Arch Biochem Biophys 254:579–585CrossRefPubMedGoogle Scholar
  91. Santana ÁL, Meireles MAA (2014) New starches are the trend for industry applications: a review. Food Public Health 4:229–241.  https://doi.org/10.5923/j.fph.20140405.04 CrossRefGoogle Scholar
  92. Satyanarayana T, Kawarabayasi Y, Littlechild J (eds) (2013) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles, 2nd edn. Springer, New YorkGoogle Scholar
  93. Schinzel R, Nidetzky B (1999) Bacterial alpha-glucan phosphorylases. FEMS Microbiol Lett 171:73–79.  https://doi.org/10.1111/j.1574-6968.1999.tb13414.x CrossRefPubMedGoogle Scholar
  94. Schliselfeld LH (1973) Comparative studies of phosphorylase isozymes from the rabbit. Ann N Y Acad Sci 210:181–191.  https://doi.org/10.1111/j.1749-6632.1973.tb47571.x CrossRefPubMedGoogle Scholar
  95. Schwartz M, Hofnung M (1967) Maltodextrin phosphorylase of Escherichia coli. Eur J Biochem 2:132–145CrossRefPubMedGoogle Scholar
  96. Shin H, Shin Y, Lee D (2000) Formation of α-D-glucose-1-phosphate by thermophilic α-1,4-D-glucan phosphorylase. J Ind Microbiol Biotechnol 24:89–93.  https://doi.org/10.1038/sj.jim.2900757 CrossRefGoogle Scholar
  97. Shivaram KN (1976) Purification and properties of potato phosphorylase isozymes. Verlag der Zeitschrift für Naturforsch C 31:424–432.  https://doi.org/10.1515/znc-1976-7-816 CrossRefGoogle Scholar
  98. Sievers F, Higgins DG (2018) Clustal omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145.  https://doi.org/10.1002/pro.3290 CrossRefPubMedGoogle Scholar
  99. Spring P, Wenk C, Connolly A, Kiers A (2015) A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. J Appl Anim Nutr 3:e8.  https://doi.org/10.1017/jan.2015.6 CrossRefGoogle Scholar
  100. Suzuki T, Yasugi M, Arisaka F, Yamagishi A, Oshima T (2001) Adaptation of a thermophilic enzyme, 3-isopropylmalate dehydrogenase, to low temperatures. Protein Eng 14:85–91.  https://doi.org/10.1093/protein/14.2.85 CrossRefPubMedGoogle Scholar
  101. Takaha T, Michiyo Y, Takata H, Okada S (2001) Structure and properties of Thermus aquaticus α-glucan phosphorylase expressed in Escherichia coli. J Appl Glycosci 48:71–78.  https://doi.org/10.5458/jag.48.71 CrossRefGoogle Scholar
  102. Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1998) Purification and characterization of α-glucan phosphorylase from Bacillus stearothermophilus. J Ferment Bioeng 85:156–161.  https://doi.org/10.1016/S0922-338X(97)86760-8 CrossRefGoogle Scholar
  103. Tanabe S, Kobayashi M, Matsuda K (1987) Yeast glycogen phosphorylase: characterization of the dimeric form and its activation. Agric Biol Chem 51:2465–2471.  https://doi.org/10.1080/00021369.1987.10868399 CrossRefGoogle Scholar
  104. Timmons SC, Jakeman DL (2008) Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides. Carbohydr Res 343:865–874.  https://doi.org/10.1016/j.carres.2008.01.046 CrossRefPubMedGoogle Scholar
  105. Titani K, Koide A, Hermann J, Ericsson LH, Kumar S, Wade RD, Walsh KA, Neurath H, Fischer EH (1977) Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci U S A 74:4762–4766.  https://doi.org/10.1073/pnas.74.11.4762 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tsuruta O, Shinohara G, Yuasa H, Hashimoto H (1997) UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg Med Chem Lett 7:2523–2526.  https://doi.org/10.1016/S0960-894X(97)10009-9 CrossRefGoogle Scholar
  107. Umegatani Y, Izawa H, Nawaji M, Yamamoto K, Kubo A, Yanase M, Takaha T, Kadokawa JI (2012) Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5. Carbohydr Res 350:81–85.  https://doi.org/10.1016/j.carres.2011.12.022 CrossRefPubMedGoogle Scholar
  108. Van Der Borght J, Desmet T, Soetaert W (2010) Enzymatic production of β-D-glucose-1-phosphate from trehalose. Biotechnol J 5:986–993.  https://doi.org/10.1002/biot.201000203 CrossRefPubMedGoogle Scholar
  109. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler M (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, Cold Spring HarborGoogle Scholar
  110. Vieille C, Zeikus JG (1996) Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol 14:183–190.  https://doi.org/10.1016/0167-7799(96)10026-3 CrossRefGoogle Scholar
  111. Vornanen M, Haverinen J (2011) Seasonality of glycogen phosphorylase activity in crucian carp (Carassius carassius L.). J Comp Physiol B Biochem Syst Environ Physiol 181:917–926.  https://doi.org/10.1007/s00360-011-0580-4 CrossRefGoogle Scholar
  112. Watson KA, Schinzel R, Palm D, Johnson LN (1997) The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J 16:1–14.  https://doi.org/10.1093/emboj/16.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Watson KA, McCleverty C, Geremia S, Cottaz S, Driguez H, Johnson LN (1999) Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J 18:4619–4632.  https://doi.org/10.1093/emboj/18.17.4619 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Watt GM, Revers L, Webberley MC, Wilson IBH, Flitsch SL (1997) Efficient enzymatic synthesis of the core trisaccharide of N-glycans with a recombinant P-mannosyltransferase. Angew Chem Int Ed 36:2354–2356.  https://doi.org/10.1002/anie.199723541 CrossRefGoogle Scholar
  115. Weinhäusel A, Nidetzky B, Kysela C, Kulbe KD (1995) Application of Escherichia coli maltodextrin-phosphorylase for the continuous production of glucose-1-phosphate. Enzym Microb Technol 17:140–146.  https://doi.org/10.1016/0141-0229(94)00055-V CrossRefGoogle Scholar
  116. Weinhäusel A, Grießler R, Krebs A, Zipper P, Haltrich D, Kulbe KD, Nidetzky B (1997) α-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae : isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. Biochem J 773–83.  https://doi.org/10.1002/anie.199723541 CrossRefGoogle Scholar
  117. Wiegel VJ, Ljungdahl LG e, Lee YJ, Dashti M, Prange A, Rainey FA, Rohde M, Whitman WB, Wiegel J (2015) Thermoanaerobacter. In: Onyenwoke RU, Wiegel J (eds) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–29Google Scholar
  118. Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 181:3358–3367PubMedPubMedCentralGoogle Scholar
  119. Yanase M, Takata H, Fujii K, Takaha T, Kuriki T (2005) Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L α-glucan phosphorylase. Appl Environ Microbiol 71:5433–5439.  https://doi.org/10.1128/AEM.71.9.5433-5439.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yanase M, Takaha T, Kuriki T (2007) Developing and engineering enzymes for manufacturing amylose. J Appl Glycosci 54:125–131.  https://doi.org/10.5458/jag.54.125 CrossRefGoogle Scholar
  121. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang YHP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152.  https://doi.org/10.1002/cssc.200900017 CrossRefPubMedGoogle Scholar
  122. Ye X, Rollin J, Zhang YHP (2010) Thermophilic α-glucan phosphorylase from Clostridium thermocellum: cloning, characterization and enhanced thermostability. J Mol Catal B Enzym 65:110–116.  https://doi.org/10.1016/j.molcatb.2010.01.015 CrossRefGoogle Scholar
  123. Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641.  https://doi.org/10.1111/1462-2920.12173 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226.  https://doi.org/10.1002/cben.201400025 CrossRefGoogle Scholar
  125. Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456.  https://doi.org/10.1371/journal.pone.0000456 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zhou W, You C, Ma H, Ma Y, Zhang YHP (2016) One-pot biosynthesis of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes. J Agric Food Chem 64:1777–1783.  https://doi.org/10.1021/acs.jafc.5b05648 CrossRefPubMedGoogle Scholar
  127. Zhu Z, Tam TK, Sun F, You C, Zhang YP (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026.  https://doi.org/10.1038/ncomms4026 CrossRefPubMedGoogle Scholar
  128. Zillig W, Holz I, Janeković D, Schäfer W, Reiter WD (2015) Thermococcus. In: Kobayashi T (ed) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, New York, pp 1–8Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Synthetic Biology (CSB), Department of BiotechnologyGhent UniversityGhentBelgium
  2. 2.Cargill R&D Centre Europe BVBAVilvoordeBelgium

Personalised recommendations