Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8229–8259 | Cite as

The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L.

  • Saikat Gantait
  • Maiada M. El-Dawayati
  • Jitendriya Panigrahi
  • Catherine Labrooy
  • Sandeep Kumar Verma
Mini-Review

Abstract

Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called “tree of life” owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.

Keywords

Clonal fidelity Date palm Genetic transformation Germplasm conservation Micropropagation Secondary metabolite Somatic embryogenesis 

Notes

Acknowledgements

The authors acknowledge the e-library assistance from the Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. We further are thankful to the anonymous reviewers and the editor of this article for their critical comments and suggestions on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abahmane L (2013) Recent achievements in date palm (Phoenix dactylifera L.) micropropagation from inflorescence tissues. Emir J Food Agric 25:863CrossRefGoogle Scholar
  2. Abahmane L (2017) Cultivar-dependent direct organogenesis of date palm from shoot tip explants. In: Al-Khayri JM, Jain S, Johnson D (eds) Date palm biotechnology protocols, Vol I, Tissue culture applications. Springer, New York, pp 3–15CrossRefGoogle Scholar
  3. Abass MH (2016) Responses of date palm (Phoenix dactylifera L.) callus to biotic and abiotic stresses. Emir J Food Agric 28:66–74CrossRefGoogle Scholar
  4. Abd El Bar OH, El-Dawayati MM (2014) Histological changes on regeneration in vitro culture of date palm (‘Phoenix dactylifera’) leaf explants. Aust J Crop Sci 8:848Google Scholar
  5. Abdolvand B, Zarghami R, Hasani H, Mardi M, Zade HZ (2014) Effect of 2,4-D and 2-iP hormones on embryogenesis callus production and the effect of sucrose and concentrations of MS salts on somatic embryogenesis of date palm (cv. Medjool). Intl J Farm Alli Sci 3:1188–1193Google Scholar
  6. Abdolvand B, Zarghami R, Salari A (2018) The effects of AgNO3 and 2iP (N6-(2-Isopentenyl) adenine) on different stages of somatic embryogenesis in date palm (Phoenix dactylifera L.) (cv. Medjool). Pak J Bot 50:495–502Google Scholar
  7. Abdullah R, Chari C, Ping WYS, Huey YL (2003) Transgenic oil palm with stably integrated CpTI gene confers resistance to bagworm larvae. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Springer, Dordrecht, pp 163–165CrossRefGoogle Scholar
  8. Abdullah R, Zainal A, Yew Heng W, Chui Li L, Chee Beng Y, Mei Phing L, Abdullah Sirajuddin S, Soo Ping WY, Lourdes Joseph J, Azma Jusoh S (2005) Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electron J Biotechnol 8:24–34CrossRefGoogle Scholar
  9. Abdulwahed MS (2013) Identification of the effect of different levels of activated charcoal and sucrose on multiplication shoots of date palm Phoenix dactylifera L. c.v. sufedy in vitro. J Hortic For 5:139–145Google Scholar
  10. Abohatem M, Zouine J, El Hadrami I (2011) Low concentrations of BAP and high rate of subcultures improve the establishment and multiplication of somatic embryos in date palm suspension cultures by limiting oxidative browning associated with high levels of total phenols and peroxidase activities. Sci Hortic 130:344–348CrossRefGoogle Scholar
  11. Abul-Soad AA (2012) Influence of inflorescence explant age and 2,4-D incubation period on somatic embryogenesis of date palm. Emir J Food Agric 24:434Google Scholar
  12. Abul-Soad AA, Jatoi MA (2014) Factors affecting in vitro rooting of date palm (Phoenix dactylifera L.). Pak J Agric Sci 51:477–484Google Scholar
  13. Abul-Soad AA, Mahdi SM (2010) Commercial production of tissue culture date palm (Phoenix dactylifera L.) by inflorescence technique. J Genet Eng Biotechnol 8:39–44Google Scholar
  14. Ahmed O, Chokri B, Noureddine D, Mohamed M, Mokhtar T (2009) Regeneration and molecular analysis of date palm (Phoenix dactylifera L.) plantlets using RAPD markers. African J Biotechnol 8:813–820Google Scholar
  15. Al-Alawi R, Al-Mashiqri J, Al-Nadabi J, Al-Shihi B, Baq Y (2017) Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci 8:1–12CrossRefGoogle Scholar
  16. Al-Bahrany AM, Al-Khayri JM (2012a) Optimizing in vitro cryopreservation of date palm (Phoenix dactylifera L.). Biotechnol 11:59–66CrossRefGoogle Scholar
  17. Al-Bahrany AM, Al-Khayri JM (2012b) In vitro responses of date palm cell suspensions under osmotic stress induced by sodium, potassium and calcium salts at different exposure durations. Am J Plant Physiol 7:120–134CrossRefGoogle Scholar
  18. Al-Busaidi KT, Farag KM (2015) The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury. J Hortic For 7:104–111CrossRefGoogle Scholar
  19. Al-Harrasi A, Rehman NU, Hussain J, Khan AL, Al-Rawahi A, Gilani SA (2014) Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac J Trop Med 7:S591–S598CrossRefGoogle Scholar
  20. Al-Khalifah NS, Askari E (2003) Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Theor Appl Genet 107:1266–1270PubMedCrossRefGoogle Scholar
  21. Al-Khalifah NS, Khan FA, Askari E, Hadi S (2006) In vitro culture and genetic analysis of male and female date palm (Phoenix dactylifera L.). Acta Hortic (725):653–662Google Scholar
  22. Al-Kharusi LM, Elmardi MO, Ali A, Al-Said FJ, Abdelbasit KM, Al-Rawahi S (2009) Effect of mineral and organic fertilizers on the chemical characteristics and quality of date fruits. Intl J Agric Biol 11:290–296Google Scholar
  23. Alkhateeb AA (2006) Somatic embryogenesis in date palm (Phoenix dactylifera L.) cv. Sukary in response to sucrose and polyethylene glycol. Biotechnol 5:466–470CrossRefGoogle Scholar
  24. Al-Khateeb AA (2002) Influence of different carbon sources on in-vitro root formation of date palm (Phoenix dactylifera L.) cv khanezi. Zagazig J Agric Res 28:559–566Google Scholar
  25. Al-Khateeb AA (2008) Regulation of in vitro bud formation of date palm (Phoenix dactylifera L.) cv. Khanezi by different carbon sources. Bioresour Technol 99:6550–6555PubMedCrossRefGoogle Scholar
  26. Al-Khateeb SA, Al-Khateeb AA, Solliman ME (2015) In vitro response of date palm (Phoenix dactylifera L.) to K/Na ratio under saline conditions. Biol Res 48:1–9CrossRefGoogle Scholar
  27. Al-Khayri JM (2001) Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell Dev Biol-Plant 37:453–456CrossRefGoogle Scholar
  28. Al-Khayri JM (2007) Date palm Phoenix dactylifera L. micropropagation. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 509–526CrossRefGoogle Scholar
  29. Al-Khayri JM (2010) Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotechnol 9:477–484CrossRefGoogle Scholar
  30. Al-Khayri JM (2011a) Basal salt requirements differ according to culture stage and cultivar in date palm somatic embryogenesis. Am J Biochem Biotechnol 7:32–42CrossRefGoogle Scholar
  31. Al-Khayri JM (2011b) Influence of yeast extract and casein hydrolysate on callus multiplication and somatic embryogenesis of date palm (Phoenix dactylifera L.). Sci Hortic 130:531–535CrossRefGoogle Scholar
  32. Al-Khayri JM (2011c) Growth, proline accumulation and ion content in sodium chloride stressed callus of date palm. In Vitro Cell Dev Biol-Plant 38:79–82CrossRefGoogle Scholar
  33. Al-Khayri JM (2012) Determination of the date palm cell suspension growth curve, optimum plating effi ciency, and infl uence of liquid medium on somatic embryogenesis. Emir J Food Agric 24:444–455Google Scholar
  34. Al-Khayri JM, Al-Bahrany AM (2001) Silver nitrate and 2-isopentyladenine promote somatic embryogenesis in date palm (Phoenix dactylifera L.). Sci Hortic 89:291–298CrossRefGoogle Scholar
  35. Al-Khayri JM, Al-Bahrany AM (2004a) Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hortic 99:153–162CrossRefGoogle Scholar
  36. Al-Khayri JM, Al-Bahrany AM (2004b) Growth, water content, and proline accumulation in drought-stressed callus of date palm. Biol Plant 48:105–108CrossRefGoogle Scholar
  37. Al-Khayri JM, Al-Bahrany AM (2012) Effect of abscisic acid and polyethylene glycol on the synchronization of somatic embryo development in date palm (Phoenix dactylifera L.). Biotechnol 11:318–325CrossRefGoogle Scholar
  38. Al-Khayri JM, Naik PM (2017) Date palm micropropagation: advances and applications. Cienc Agrotecnol 41:347–358CrossRefGoogle Scholar
  39. Al-Khayri JM, Niblett CL (2012) Envision of an international consortium for palm research. Emir J Food Agric 24:470Google Scholar
  40. Al-Khayri JM, Naik PM, Alwael HA (2017) In vitro assessment of abiotic stress in date palm: salinity and drought. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol I, Methods in molecular biology, vol 1637. Humana Press, New York, pp 333–346Google Scholar
  41. Al-Mansoori TA, Alaa El-Deen MN, Caligari PDS (2007) Evaluation of in vitro screening techniques for salt tolerance in date palm. Acta Hortic (736):301–307Google Scholar
  42. Al-Mayahi AMW (2014) Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) CV. Hillawi. Afr J Biotechnol 13:3581–3590CrossRefGoogle Scholar
  43. Al-Mayahi AMW (2015) An efficient protocol for indirect somatic embryogenesis and shoot organogenesis from leaf segments of date palm (Phoenix dactylifera L.) CV. Quntar. Afr J Agric Res 10:1031–1042CrossRefGoogle Scholar
  44. Al-Mayahi AMW (2016a) Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr. World J Microbiol Biotechnol 32:160PubMedCrossRefGoogle Scholar
  45. Al-Mayahi AMW (2016b) Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera L.) cv. ‘Nersy’. Aust J Crop Sci 10:969–976CrossRefGoogle Scholar
  46. Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J (2013) Genome sequence of the date palm (Phoenix dactylifera L.). Nat Commun 4:2274PubMedPubMedCentralCrossRefGoogle Scholar
  47. Almusawi AHA, Sayegh AJ, Alshanaw AM, Griffis JL (2017) Plantform bioreactor for mass micropropagation of date palm. In: Al-Khayri JM, Jain SM, Johnson D (eds), Date palm biotechnology protocols, Vol I. Methods in molecular biology, vol 1637. Humana Press, New York, pp 251–265Google Scholar
  48. Al-Qurainy F, Khan S, Nadeem M, Tarroum M (2015) SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. Pak J Bot 47:637–643Google Scholar
  49. Al-Shahib W, Marshall RJ (2013) The fruit of the date palm: it’s possible use as the best food for the future? Int J Food Sci Nutr 54:247–259CrossRefGoogle Scholar
  50. Al-Zubaydi S, Jassim A, Zair H (2013) Effect of sodium chloride and proline on embryo formation and germination through in vitro micropropagation of date palm (Phoenix dactylifera L.) cv. Barhee [II]. J Agric Sci Technol B 3:313–320Google Scholar
  51. Ammar S, Benbadis A, Tripathi BK (1987) Floral induction in date palm seedlings (Phoenix dactylifera var. Deglet Nour) cultured in vitro. Can J Bot 65:137–142CrossRefGoogle Scholar
  52. Ammar NM, Al-Okbi SY, Mohamed DA, El-Kassem LTA (2009) Antioxidant and estrogen like activity of the seed Phoenix dactylifera L. palm growing in Egyptian oases. Rep Opin 1:1–8Google Scholar
  53. Asemota O, Eke CR, Odewale JO (2007) Date palm (Phoenix dactylifera L.) in vitro morphogenesis in response to growth regulators, sucrose and nitrogen. Afr J Biotechnol 6:2353–2357CrossRefGoogle Scholar
  54. Ashraf Z, Hamidi-Esfahani Z (2011) Date and date processing: a review. Food Rev Int 27:101–133CrossRefGoogle Scholar
  55. Aslam J, Khan SA, Cheruth AJ, Mujib A, Sharma MP, Srivastava PS (2011) Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi J Biol Sci 18:369–380PubMedPubMedCentralCrossRefGoogle Scholar
  56. Assani A, Chabane D, Shittu H, Bouguedoura N (2011) Date palm cell and protoplast culture. In: Jain SM, Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht, pp 605–629CrossRefGoogle Scholar
  57. Badawy EM, Habib AM, El-Bana A, Yosry GM (2005) Propagation of date palm (Phoenix dactylifera) plants by using tissue culture technique. Arab J Biotechnol 8:343–354Google Scholar
  58. Bekheet S (2013a) Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Sci Agric 4:85–92Google Scholar
  59. Bekheet S (2013b) Date palm biotechnology in Egypt. Appl Sci Rep 3:144–152Google Scholar
  60. Bekheet SA (2017a) In vitro conservation of date palm tissue cultures. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol II. Methods in molecular biology, vol 1638. Humana Press, New York, pp 15–24Google Scholar
  61. Bekheet SA (2017b) Encapsulation of date palm somatic embryos: synthetic seeds. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol II. Methods in molecular biology, vol 1638. Humana Press, New York, pp 71–78Google Scholar
  62. Bekheet SA, Taha HS (2013) Complementary strategy for conservation of date palm germplasm. Global J Biodiversity Sci Manage 3:96–107Google Scholar
  63. Bekheet SA, Saker MM, Taha HS, Moursy HA (2001a) Plant regeneration via somatic embryogenesis in date palm (Phoenix dactylifera L.). Arab. J Biotechnol 4:111–118Google Scholar
  64. Bekheet SA, Taha HS, Saker MM (2001b) In vitro long-term storage of date palm. Biol Plant 45:121–124CrossRefGoogle Scholar
  65. Bekheet SA, Taha HS, El-Bahr MK (2005) Preservation of date palm cultures using encapsulated somatic embryos. Arab J Biotechnol 8:319–328Google Scholar
  66. Bekheet SA, Taha HS, Solliman ME, Hassan NA (2007) Cryopreservation of date palm (Phoenix dactylifera L.) cultured in vitro. Acta Hortic (736):283–291Google Scholar
  67. Bhargava SC, Saxena SN, Sharma R (2003) In vitro multiplication of Phoenix dactylifera (L). J Plant Biochem Biotechnol 12:43–47CrossRefGoogle Scholar
  68. Bhati A, Singh D, Garg S, Sivalingam P (2017) Effect of 2, 4-D and NAA on callus induction in date palm cv Halawy and Medjool. Int J Farm Sci 7:132–136Google Scholar
  69. Biglari F, AlKarkhi AF, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107:1636–1641CrossRefGoogle Scholar
  70. Boufis N, Khelifi-Slaoui M, Djillali Z, Zaoui D, Morsli A, Bernards MA, Makhzum A, Khelifi L (2014) Effects of growth regulators and types of culture media on somatic embryogenesis in date palm (Phoenix dactylifera L. cv. Degla Beida). Sci Hortic 172:135–142CrossRefGoogle Scholar
  71. Bouguedoura N, Si-Dehbi F, Fergani K, Arban A, Chabane D (2017) Somatic embryogenesis in date palm (Phoenix dactylifera L.) ‘Deglet Nur’ and ‘Takerbucht’ cultivars. Int J Plant Reprod Biol 9:43–48Google Scholar
  72. Carr M (2013) The water relations and irrigation requirements of the date palm (Phoenix dactylifera L.): a review. Exp Agric 49:91–113CrossRefGoogle Scholar
  73. Chabane D, Assani A, Bouguedoura N, Haicour R, Ducreux (2007) Induction of callus formation from difficile date palm protoplasts by means of nurse culture. C R Biol 330:392–401CrossRefPubMedGoogle Scholar
  74. Chao CT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortSci 42:1077–1082Google Scholar
  75. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484PubMedPubMedCentralCrossRefGoogle Scholar
  76. Corniquel B, Mercier L (1994) Date palm (Phoenix dactylifera L.) cultivar identification by RFLP and RAPD. Plant Sci 101:163–172CrossRefGoogle Scholar
  77. Davoodi D, Majidi E, Khoshkam S (2002) Some morphological and anatomical aspects of date palm (Phoenix dactylifera L.) somatic embryogenesis in tissue culture. J Agricult. Sci Technol 4:63–71Google Scholar
  78. Dowson JH (1982) The evaluation of auto fluorescence emission spectra derived from neuronal lipopigment. J Microsc 128:261–270PubMedCrossRefGoogle Scholar
  79. Eeuwen CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28CrossRefGoogle Scholar
  80. El Fatih MM, Hind Badereldin H (2010) Cultivar differences of date palm (Phoenix dactylifera L.) in somatic embryogenesis micropropagation. Acta Hortic (882):193–198Google Scholar
  81. El-Ashry AA, Shaltout AD, El-Bahr MK, Abd El-Hamid A, Bekheet SA (2013) In vitro preservation of embryogenic callus cultures of two Egyptian dry date palm cultivars at darkness and low temperature conditions. J Hortic Sci Ornamental Plants 5:118–126Google Scholar
  82. El-Assar AM, Krueger RR, Devanand PS, Chao CCT (2005) Genetic analysis of Egyptian date (Phoenix dactylifera L.) accessions using AFLP markers. Genet Resour Crop Evol 52:601–607CrossRefGoogle Scholar
  83. El-Bahr MK, Abd EL-Hamid AB, Matter MA, Shaltout A, Bekheet SA, El-Ashry AA (2016) In vitro conservation of embryogenic cultures of date palm using osmotic mediated growth agents. J Genet Eng Biotechnol 14:363–370CrossRefGoogle Scholar
  84. El-Dawayati MM (2008) Using tissue culture technology to storage some plant tissues of date palm. Ph.D. Thesis, Department of Pomology, Faculty of Agriculture, Cairo University, EgyptGoogle Scholar
  85. El-Dawayati MM (2017) In vitro conservation of date palm shoot-tip explants and callus cultures under minimal growth conditions. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol II. Methods in molecular biology, vol 1638. Humana Press, New York, pp 49–59Google Scholar
  86. El-Dawayati MM, Baker EI, Gomaa AH (2007) Cryopreservation of in vitro established shoot tip explants of date palm cv. Zaghlool. Assiut J Agric Sci 38:75–95Google Scholar
  87. El-Dawayati MM, Zayed Z Baker EI, Gomaa AH (2011) Studies on storage under minimal growth conditions of date palm callus explants. In: Proceedings first scientific conference forthe development of the date palm and datessector in the Arab world. King Abdulaziz, City for Science and Technology, Kingdom of Saudi Arabia, 4–7 Dec 2011, pp. 401–420Google Scholar
  88. El-Dawayati MM, Zaid ZE, Elsharabasy SF (2012) Effect of conservation on steroids contents of callus explants of date palm cv. Sakkoti. Aust J Basic Appl Sci 6:305–310Google Scholar
  89. El-Dawayati MM, Baker EI, Gomaa AH, Zayed Z (2013) In vitro conservation of date palm shoot tip explants under minimal growth condition. Egypt J Agric Res 91:1043–1062Google Scholar
  90. El-Dawayati MM, Abdel Baki MA, Abdelgalil LM (2018a) Effect of different conservation period with different sucrose concentrations on conserving somatic embryo clusters of date palm (Phoenix dactylifera L.) under minimal growth conditions. Appl Sci Rep 21:14–21Google Scholar
  91. El-Dawayati MM, Ghazzawy HS, Munir M (2018b) Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid media conditions. Int J Biosci 12:149–159CrossRefGoogle Scholar
  92. El-Hadrami I (1995) L’embryogenèse somatique chez Phoenix dactylifera L. quelques facteurs limitants et marqueurs biochimiques. TheÁse d'Etat, University Cadi Ayyad Marrakech, MoroccoGoogle Scholar
  93. El-Sharabasy SF (2000) Studies on the production of secondary metabolites from date palm by using tissue culture technique. Ph.D. Thesis, Al-Azhar University, Cairo, p 200Google Scholar
  94. El-Sharabasy S, El-Dawayati MM (2017) Bioreactor steroid production and analysis of date palm embryogenic callus. In: Al-Khayri JM, Jain SM, Johnson D (eds), Date palm biotechnology protocols, Vol I, Tissue culture and applications, Springer, pp. 309–318Google Scholar
  95. El-Sharabasy SF, Wanas WH, Al-Kerdany AY (2008a) Effect of salinity stress on some date palm cultivars during proliferation stage in vitro. Arab J Biotechnol 11:273–280Google Scholar
  96. El-Sharabasy SF, Wanas WH, Al-Kerdany AY (2008b) Date palm cultivars in vitro screening to drought tolerance using isozymes. Arab J Biotechnol 11:263–272Google Scholar
  97. El-Sharabasy S, Farag MA, El-Emerym G, Safwat G, Diab A (2012) Effect of amino acids on the growth and production of steroids in date palm using tissue culture technique. Researcher 4:75–84Google Scholar
  98. Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hortic (1039):31–39Google Scholar
  99. Eshraghi P, Zarghami R, Mirabdulbaghi M (2005) Somatic embryogenesis in two Iranian date palm cultivars. Afr J Biotechnol 4:1309–1312Google Scholar
  100. Fki L, Masmoudi R, Drira N, Rival A (2003) An optimised protocol for plant regeneration from embryogenic suspension cultures of date palm, Phoenix dactylifera L. cv. Deglet Nour. Plant Cell Rep 21:517–524PubMedGoogle Scholar
  101. Fki L, Bouaziz N, Kriaâ W, Benjemaa-Masmoudi R, Gargouri-Bouzid R, Rival A, Drira N (2011) Multiple bud cultures of ‘Barhee’ date palm (Phoenix dactylifera) and physiological status of regenerated plants. J Plant Physiol 168:1694–1700PubMedCrossRefGoogle Scholar
  102. Fki L, Chkir O, Kriaâ W, Nasri A, Baklouti E, Masmoudi RB, Rival A, Drira N, Panis B (2017) In vitro cryopreservation of date palm caulogenic meristems. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol II. Methods in molecular biology, vol 1638. Humana Press, New York, pp 39–48Google Scholar
  103. Gadalla EG (2017) Direct organogenesis from immature female inflorescence of date palm by gradual reduction of 2,4-D concentration. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol I, Tissue culture and applications. Springer, New York, pp 26–35Google Scholar
  104. Gadalla EG, Ibrahim AA, Magda MK (2018) In vitro propagation of Egyptian dry date palm: effect of cytokinin on growth and development of the repetitive somatic embryos. Sci Agric 21:35–40Google Scholar
  105. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  106. Gantait S, Kundu S (2017) Neoteric trends in tissue culture-mediated biotechnology of Indian ipecac [Tylophora indica (Burm. f.) Merrill]. 3Biotech 7:231Google Scholar
  107. Gantait S, Mandal N, Das PK (2009) Impact of auxins and activated charcoal on in vitro rooting of Dendrobium chrysotoxum Lindl. cv. Golden Boy. J Trop Agric 47:84–86Google Scholar
  108. Gantait S, Sinniah UR, Suranthran P (2012) Influence of gibberellin A3 application, pH of the medium, photoperiod and temperature on enhancement of in vitro flowering in Vitex negundo L. Plant Growth Regul 66:203–209CrossRefGoogle Scholar
  109. Gantait S, Das A, Mandal N (2015a) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106CrossRefGoogle Scholar
  110. Gantait S, Kundu S, Ali N, Sahu NC (2015b) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98CrossRefGoogle Scholar
  111. Gantait S, Sinniah UR, Suranthran P, Palanyandy SR, Subramaniam S (2015c) Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet-vitrification approach and assessment of genetic fidelity. Protoplasma 252:89–101PubMedCrossRefGoogle Scholar
  112. Gros-Balthazard M, Newton C, Ivorra S, Pierre M, Pintaud G, Terral (2016) The domestication syndrome in Phoenixdacty lifera seeds: toward the identification of wild date palm populations. PLoS One:1–21Google Scholar
  113. Gueye B, Morcillo F, Collin M, Gargani D, Overvoorde P, Aberlenc-Bertossi F, Tranbarger TJ, Sane D, Tregear JW, Borgel A, Verdeil JL (2009a) Acquisition of callogenic capacity in date palm leaf tissues in response to 2, 4-D treatment. Plant Cell Tissue Organ Cult 99:35–45CrossRefGoogle Scholar
  114. Gueye B, Saïd-Ahmed H, Morcillo F, Borgel A, Sané D, Hilbert JL, Verdeil JL, Blervacq AS (2009b) Callogenesis and rhizogenesis in date palm leaf segments: are there similarities between the two auxin-induced pathways? Plant Cell Tissue Organ Cult 98:47–58CrossRefGoogle Scholar
  115. Habashi AA, Kaviani M, Mousavi A, Khoshkam S (2008) Transient expression of β-glucuronidase reporter gene in date palm (Phoenix dactylifera L.) embryogenic calli and somatic embryos via microprojectile bombardment. J Food Agric Environ 6:160–163Google Scholar
  116. Hassan M (2002) In vitro studies on somatic embryogenesis conservation of date palm. Ph.D. Thesis Department of Pomology, Faculty of Agriculture, Cairo University, EgyptGoogle Scholar
  117. Hazzouri KM, Flowers JM, Visser HJ, Khierallah HS, Rosas U, Pham G (2015) Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun 6:8824PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hegazy AE, Aboshama HM (2010) An efficient novel pathway discovered in date palm micropropagation. Acta Hortic (882):167–176Google Scholar
  119. Helaly MNM, El-Hosieny AMH (2011) In vitro selection and photosynthetic characterization of date palm regenerated seedling as affected by water stress. Am J Plant Physiol 6:126–143CrossRefGoogle Scholar
  120. Hosny SM, Hammad G, El Sharbasy S, Zayed Z (2016) Effect of coconut milk, casein hydrolysate and yeast extract on the proliferation of in vitro Barhi date palm (Phoenix dactylifera L.). J Hortic Sci Ornamental Plants 8:46–54Google Scholar
  121. Ibraheem Y, Pinker I, Böhme M (2013) A comparative study between solid and liquid cultures relative to callus growth and somatic embryo formation in date palm (Phoenix dactylifera L.) cv. Zaghlool. Emir J Food Agric 25:883CrossRefGoogle Scholar
  122. Ibrahim AI, Gomaa AH, Eldein AS, Faik B, Hamd AM (2003) Encapsulation of somatic embryos of date palm (Phoenix dactylifera L.) in synthetic seed coats. Ann Agric Sci Moshtoher 41:299–312Google Scholar
  123. Iida A, Seki M, Kamada M, Yamada Y, Morikawa H (1990) Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor Appl Genet 80:813–816PubMedCrossRefGoogle Scholar
  124. Izawati D, Masli A, Masani A, Yunus M, Ismail I, Kadir G, Parveez A (2015) Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens. Front Plant Sci 6:727PubMedPubMedCentralCrossRefGoogle Scholar
  125. Jain SM (2006) Radiation induced mutations for developing Bayoud disease resistant date palm in North Africa. In: Proceeding of the international workshop on true-to-typeness of date palm tissue culture-derived plants. 16: 47–62Google Scholar
  126. Jain SM (2012) Date palm biotechnology: current status and prospective—an overview. Emir J Food Agric 24:386–399Google Scholar
  127. Jain SM, Al-Khayri JM, Johnson DV (2011) Date palm biotechnology. Springer, Dordrecht, p 743CrossRefGoogle Scholar
  128. Jasim AM, Abbas MF, Alzubaidy BH (2010) Effect of salt stress and proline on chemical content of embryogenic callus and somatic embryos of date palm (Phoenix dactylifera ‘Ashkar’). Acta Hortic 882:219–224CrossRefGoogle Scholar
  129. Jazinizadeh E, Zarghami R, Majd A, Iranbakhsh A, Tajaddod G (2015) In vitro production of date palm (Phoenix dactylifera L.) cv. ‘Barhee’ plantlets through direct organogenesis. Biol Forum 7:566–572Google Scholar
  130. Johnson DV (2011) Introduction: date palm biotechnology from theory to practice. In: Jain SM, Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht, pp 1–11Google Scholar
  131. Khan S, Bibi T (2012) Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation. Pak J Bot 44:1965–1971Google Scholar
  132. Khierallah HSM, Bader SM (2007) Micropropagation of date palm (Phoenix dactylifera L.) var. Maktoom through direct organogenesis. Acta Hortic (736):213–224Google Scholar
  133. Khierallah HSM, Bader SM, Al-Khafaji MA (2017) NAA-induced direct organogenesis from female immature inflorescence explants of date palm. In: Al-Khayri J, Jain S, Johnson D (eds) Date palm biotechnology protocols, Vol I. Methods in molecular biology, vol 1637. Humana Press, New York, pp 16–25Google Scholar
  134. Kriaâ W, Sghaier-Hammami B, Masmoudi-Allouche F, Benjemaa-Masmoudi R, Drira N (2012) The date palm (Phoenix dactylifera L.) micropropagation using completely mature female flowers. C R Biol 335:194–204PubMedCrossRefGoogle Scholar
  135. Kumar N, Modi AR, Singh AS, Gajera BB, Patel AR, Patel MP, Subhash N (2010) Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Physiol Mol Biol Plants 16:207–213PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kurup SS, Aly MA, Lekshmi G, Tawfik NH (2014) Rapid in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Kheneizi using tender leaf explant. Emir J Food Agric 26:539CrossRefGoogle Scholar
  137. Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by shoot tip culture. Intl Plant Prop Soc Proc 30:421–427Google Scholar
  138. Mandumpal JB, Kreck CA, Mancera RL (2011) A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys Chem Chem Phys 13:3839–3842PubMedCrossRefGoogle Scholar
  139. Masmoudi-Allouche F, Châari-Rkhis A, Kriaâ W, Gargouri-Bouzid R, Jain SM, Drira N (2009) In vitro hermaphrodism induction in date palm female flower. Plant Cell Rep 28:1–10PubMedCrossRefGoogle Scholar
  140. Masmoudi-Allouche F, Meziou B, Kriaâ W, Gargouri-Bouzid R, Drira N (2010) In vitro flowering induction in date palm (Phoenix dactylifera L.). J Plant Growth Regul 29:35–43CrossRefGoogle Scholar
  141. Mater AA (1987) Production of cryogenic freezing of date palm germplasm and regeneration of plantlets from frozen material. Iraq J Agric Sci Zanco 5:35–49Google Scholar
  142. Mazri MA (2012) Effect of liquid media and in vitro pre-acclimatization stage on shoot elongation and acclimatization of date palm (Phoenix dactylifera L.) cv. Najda. J Ornam Hortic Plants 2:225–231Google Scholar
  143. Mazri MA (2013) Effect of basal medium, explants size and density on the in vitro proliferation and growth of date palm (Phoenix dactylifera L.) cultivar ‘16-bis’. Not Sci Biol 5:332–337CrossRefGoogle Scholar
  144. Mazri MA (2014) Effects of plant growth regulators and carbon source on shoot proliferation and regeneration in date palm (Phoenix dactylifera L.) ‘16-bis’. J Hortic Sci Biotechnol 89:415–422CrossRefGoogle Scholar
  145. Mazri MA (2015) Role of cytokinins and physical state of the culture medium to improve in vitro shoot multiplication, rooting and acclimatization of date palm (Phoenix dactylifera L.) cv. Boufeggous. J Plant Biochem Biotechnol 24:268–275CrossRefGoogle Scholar
  146. Mazri MA, Meziani R (2013) An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J Plant Biochem Biotechnol 22:176–184CrossRefGoogle Scholar
  147. Mazri MA, Meziani R (2015) Micropropagation of date palm: a review. Cell Dev Biol 4:160Google Scholar
  148. Mazri MA, Belkoura I, Meziani R, Mokhless B, Nour S (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3Biotech 7:58Google Scholar
  149. Mazri MA, Meziani R, Belkoura I, Mokhless B, Nour S (2018) A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul. 3Biotech 8:215Google Scholar
  150. Meziani R, Jaiti F, Mazri MA, Anjarne M, Chitt MA, El Fadile J, Alem C (2015) Effects of plant growth regulators and light intensity on the micropropagation of date palm (Phoenix dactylifera L.) cv. Mejhoul. J Crop Sci Biotechnol 18:325–331CrossRefGoogle Scholar
  151. Moghaieb RE, Abdel-Hadi AHA, Ahmed MRA (2011) Genetic stability among date palm plantlets regenerated from petiole explants. Afr J Biotechnol 10:14311–14318CrossRefGoogle Scholar
  152. Mousavi M, Mousavi A, Habashi AA, Dehsara B (2014) Genetic transformation of date palm (Phoenix dactylifera L. cv.‘Estamaran’) via particle bombardment. Mol Biol Rep 41:8185–8194CrossRefPubMedGoogle Scholar
  153. Munier P (1973) Le Palmier-dattier-Techniques agricoles et productions tropicales; Maison Neuve et Larose, Paris, pp 217Google Scholar
  154. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–495CrossRefGoogle Scholar
  155. MyCock DJ, Berjak P, Pammenter NW, Vertucci CW (1997) Cryopreservation of somatic embryos of Phoenix dactylifera L. In: Ellis RH, Black M, Murdoch AL, Hong TD (eds) Basic applied aspects of seed biology. Kluwer, Dordrecht, pp 75–82CrossRefGoogle Scholar
  156. Naik PM, Al-Khayri JM (2016) Somatic embryogenesis of date palm (Phoenix dactylifera L.) through cell suspension culture. In: Jain S (ed) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, second edition. Methods in molecular biology, vol 1391. Humana Press, New York, pp 357–366Google Scholar
  157. Naik PM, Al-Khayri JM (2017) Extraction and estimation of secondary metabolites from date palm cell suspension cultures. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol I. Methods in molecular biology, vol 1637. Humana Press, New York, pp 319–332Google Scholar
  158. Niblett C, Bailey A (2012) Potential applications of gene silencing or RNA interference (RNAi) to control disease and insect pests of date palm. Emir J Food Agric 24:462Google Scholar
  159. Niino T, Yamamoto S, Fukui K, Castillo Martinez CR, Matsumoto T, Engelmann F (2013) Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) on cryo-plates. CryoLetters 34:549–560PubMedGoogle Scholar
  160. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefPubMedGoogle Scholar
  161. Omar MS, Novak FJ (1990) In vitro regeneration and ethylmethanesulphonate (EMS) uptake in somatic embryos of date palm (Phoenix dactylifera L.). Plant Cell Tissue Organ Cult 20:185–190Google Scholar
  162. Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009a) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Organ Cult 97:71–79CrossRefGoogle Scholar
  163. Othmani A, Bayoudh C, Drira N, Trifi M (2009b) In vitro cloning of date palm Phoenix dactylifera L., cv. Deglet Bey by using embryogenic suspension and temporary immersion bioreactor (TIB). Biotechnol Biotechnol Equip 23:1181–1188CrossRefGoogle Scholar
  164. Othmani A, Rhouma S, Bayoudh C, Mzid R, Drira N, Trifi M (2010) Regeneration and analysis of genetic stability of plantlets as revealed by RAPD and AFLP markers in date palm (Phoenix dactylifera L.) cv. Deglet Nour. Int Res J Plant Sci 1:48–55Google Scholar
  165. Panigrahi J, Dholu P, Shah TJ, Gantait S (2018) Silver nitrate-induced in vitro shoot multiplication and precocious flowering in Catharanthus roseus (L.) G. Don, a rich source of terpenoid indole alkaloids. Plant Cell Tissue Organ Cult 132:579–584CrossRefGoogle Scholar
  166. Parveez GKA, Bahariah B, Ayub NH, Masani MYA, Rasid OA, Tarmizi AH, Ishak Z (2015) Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci 6:598PubMedPubMedCentralCrossRefGoogle Scholar
  167. Popenoe PB (1938) Manual of tropical and subtropical fruits. The McMillan Company, New YorkGoogle Scholar
  168. Quoirin M, Lepoivre P (1977) Etude de milieu adaptés aux cultures in vitro. Acta Hortic 78:437–442CrossRefGoogle Scholar
  169. Rajmohan K (2011) Date palm tissue culture: a pathway to rural development. In: Jain SM, Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht, pp 29–45CrossRefGoogle Scholar
  170. Reuveni O, Adato Y, Lilien-Kipnis H (1972) A study of new and rapid methods for the vegetative propagation of date palms. Rep Annu Date Grow Inst 49:16–24Google Scholar
  171. Rizkalla AA, Badr-Elden AM, Nower AA (2007) Protoplast isolation, salt stress and callus formation of two date palm genotypes. J Appl Sci Res 3:1186–1194Google Scholar
  172. Saker M (2011) Transgenic date palm. In: Jain SM, Al-Khayri JM, Johnson D (eds) Date palm biotechnology. Springer, Dordrecht, pp 631–650CrossRefGoogle Scholar
  173. Saker MM, Bekheet SA, Taha HS, Fahmy AS, Moursy HA (2000) Detection of somaclonal variations in tissue culture-derived date palm plants using isoenzyme analysis and RAPD fingerprints. Biol Plant 43:347–351CrossRefGoogle Scholar
  174. Saker MM, Kawshity SA, El-Bahr MK, Fahmy AS (2002) Flavonoid content and isozyme analysis of tissue culture-derived date palm clones. Arab J Biotechnol 5:207–216Google Scholar
  175. Saker MM, Adawy SS, Mohamed AA, El-Itriby HA (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50:198–204CrossRefGoogle Scholar
  176. Saker MM, Allam AM, Goma HA, El-Zaher MA (2007a) Development of suspension culture system for in vitro propagation of date palm. J Genet Eng Biotech 5:51–56Google Scholar
  177. Saker MM, Allam M, Goma A, El-Zaher MA (2007b) Optimization of some factors affecting genetic transformation of semi-dry Egyptian date palm cultivar (Sewi) using particle bombardment. J Genet Eng Biotech 5:1–6Google Scholar
  178. Saker M, Kumleh J, Ghareeb H (2009) Factors influencing transient expression of Agrobacterium-mediated transformation of GUS gene in embryogenic callus of date palm. Adv Hortic Sci 23:1000–1008Google Scholar
  179. Salma M, Engelmann F (2017) Cryopreservation of date palm pro-embryonic masses using the D cryo-plate technique. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol II. Methods in molecular biology, vol 1638. Humana Press, New York, pp 25–39Google Scholar
  180. Sané D, Aberlenc-Bertossi F, Gassama-Dia YK, Sagna M, Trouslot MF, Duval Y, Borgel A (2006) Histocytological analysis of callogenesis and somatic embryogenesis from cell suspensions of date palm (Phoenix dactylifera). Ann Bot 98:301–308PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sané D, Aberlenc-Bertossi F, Diatta LID, Guèye B, Daher A, Sagna M, Duval Y, Borgel A (2012) Influence of growth regulators on callogenesis and somatic embryo development in date palm (Phoenix dactylifera L.) Sahelian cultivars. The Sci World J 2012:837395CrossRefGoogle Scholar
  182. Sani LA, Aliyu MD, Hamza A, Adetunji OA, Gidado RM, Solomon BO (2010) Exploring the Nigerian date palm (Phoenix dactylifera L.) germplasm for in vitro callogenesis. Acta Hortic (882):177–184Google Scholar
  183. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  184. Sidky RA, El-Dawyati MM (2012) Proliferation of female inflorescence explants of date palm. Ann Agric Sci 57:161–165Google Scholar
  185. Solliman ME-DM, Mohasseb HA, Al-Khateeb AA, Al-Khayri JM, Al-Khateeb SA (2017) Transient GUS gene expression in date palm fruit using agroinjection transformation technique. In: Al-Khayri JM, Jain SM, Johnson D (eds) Date palm biotechnology protocols, Vol I. Methods in molecular biology, vol 1637. Humana Press, New York, pp 295–305Google Scholar
  186. Subaih WS, Shatnawi MA, Shibli RA (2007) Cryopreservation of date palm (Phoenix dactylifera L.) embryogenic callus by encapsulation-dehydration, vitrification and encapsulation-vitrification. Jordan J Agric Sci 3:156–171Google Scholar
  187. Suranthran P, Sinniah UR, Subramaniam S, Aziz MA, Romzi N, Gantait S (2011) Effect of plant growth regulators and activated charcoal on in vitro growth and development of oil palm (Elaeis guineensis Jacq. var. Dura) zygotic embryo. African. J Biotechnol 10:10600–10606Google Scholar
  188. Taha HS, Bekheet SA, Saker MM (2001) Factors affecting in vitro multiplication of date palm. Biol Plant 44:431–433CrossRefGoogle Scholar
  189. Taha HS, Bekheet SA, El-Bahr MK (2002) Alternative approach for micropropagation of the date palm cv Zaghlool. Arab J Biotech 6:103–112Google Scholar
  190. Taha HS, Hassan MM, El-Bahr MK (2007) Micropropagation of some Egyptian date palm dry cultivars: maturation of somatic embryos. Arab J Biotech 10:333–340Google Scholar
  191. Taha H, Abdel-El Kawy A, Fathalla MA, El-Shabrawi H (2010) Implement of DMSO for enhancement and production of phenolic and peroxides compounds in suspension cultures of Egyptian date palm (Zaghlool and Samany) cultivars. J Biotech Biochem 1:1–10Google Scholar
  192. Taha HS, Bekheet SA, El-Bahr MK (2012) A new concept for production and scaling up of bioactive compounds from Egyptian date palm (Zaghlool) cultivar using bioreactor. Emir J Food Agric 24:425Google Scholar
  193. Tengberg M (2012) Beginnings and early history of date palm garden cultivation in the Middle East. J Arid Environ 86:139–147CrossRefGoogle Scholar
  194. Tisserat BH, Ulrich JM, Finkle BJ (1981) Cryogenic preservation and regeneration of date palm tissue. HortScience 16:47–48Google Scholar
  195. Titouh K, Khelifi L, Slaoui M, Boufis N, Morsli A, Moussa KTH, Makhzoum A (2015) A simplified protocol to induce callogenesis in protoplasts of date palm (Phoenix dactylifera L.) cultivars. Iran J Biotechnol 13:e1054CrossRefGoogle Scholar
  196. Vandercook CE, Hasegawa S, Maier VP (1980) Dates. In: Nagy S, Shaw PE (eds) Tropical and subtropical fruits: composition, properties, and uses. AVI Publishing Company, Westport, pp 506–541Google Scholar
  197. White PR (1963) The cultivation of animal and plant cells, 2nd edn. Ronald Press Co., New York. ISBN: 0826093809, p 22Google Scholar
  198. Yaish M, Kumar P (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:1–5Google Scholar
  199. Zaid A, de Wet PF (2002a) Botanical and systematic description of the date palm. In: Zaid A (ed), Date palm cultivation. Food and agriculture organization plant production and protection, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 1–25Google Scholar
  200. Zaid A, de Wet PF (2002b) Climatic requirements of date palm. In: Zaid A (ed), Date palm cultivation. Food and Agriculture Organization Plant Production and Protection, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 57–72Google Scholar
  201. Zaid A, de Wet PF (2002c) Date palm propagation. In: Zaid A (ed), Date palm cultivation. Food and Agriculture Organization Plant Production and Protection, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 73–105Google Scholar
  202. Zayed ZE (2017) Enhanced indirect somatic embryogenesis from shoot-tip explants of date palm by gradual reductions of 2,4-D concentration. In: Al-Khayri J, Jain S, Johnson D (eds) Date palm biotechnology protocols, Vol I. Methods in molecular biology, vol 1637. Humana Press, New York, pp 77–88Google Scholar
  203. Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, OxonGoogle Scholar
  204. Zouine J, El Hadrami I (2007) Effect of 2,4-D, glutamine and BAP on embryogenic suspension culture of date palm (Phoenix dactylifera L.). Sci Hortic 112:221–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  2. 2.The Central Laboratory of Date Palm Researches and DevelopmentAgriculture Research CenterCairoEgypt
  3. 3.Department of BiotechnologyShri A.N. Patel Post Graduate Institute of Science and ResearchAnandIndia
  4. 4.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Biotechnology Laboratory (TUBITAK Fellow), Department of BiologyBolu Abant Izeet Baysal UniversityBoluTurkey

Personalised recommendations