Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8573–8584 | Cite as

Biotransformation of ciprofloxacin by Xylaria longipes: structure elucidation and residual antibacterial activity of metabolites

  • Marina Rusch
  • Astrid Spielmeyer
  • Holger Zorn
  • Gerd Hamscher
Environmental biotechnology
  • 125 Downloads

Abstract

The impressive ability of the fungus Xylaria longipes to transform the highly persistent fluoroquinolone ciprofloxacin into microbiologically less active degradation products was demonstrated. Fluoroquinolones are used extensively in both human and veterinary medicine. Poor metabolization and high chemical stability of these synthetic antibiotics led to their presence in several environmental compartments. This undesirable behavior may promote the spread of resistance mechanisms due to concomitant exposure to bacteria. Therefore, the biotransformation of ciprofloxacin, one of the most prescribed fluoroquinolones in human medicine, by the ascomycetous soft rot fungus X. longipes was investigated in detail. Submerged cultivation of the fungus allowed for high-yield formation of four biotransformation products. These compounds were subsequently purified by preparative high-performance liquid chromatography. Applying accurate mass spectrometry and nuclear magnetic resonance spectroscopy, desethylene-ciprofloxacin, desethylene-N-acetyl-ciprofloxacin, N-formyl-ciprofloxacin and N-acetyl-ciprofloxacin were unambiguously identified. N-acetylation and N-formylation of the drug led to a 75–88% reduction of the initial antibacterial activity, whereas a breakdown of the piperazine substituent resulted in almost inactive products. These findings suggest an important role in the inactivation and degradation of this and other synthetic compounds in the environment.

Keywords

Fluoroquinolone Fungus Soft rot Metabolism Mass spectrometry NMR 

Notes

Acknowledgements

The authors thank Heike Hausmann, Anja Platt, and Anika Bernhardt (all Justus Liebig University Giessen) for excellent assistance with the NMR analyses. The authors also thank AiM GmbH (Munich, Germany) for kindly providing the BRT MRL screening tests kits for this study.

Funding Information

The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) and the State of Hesse for funding the TripleTOF mass spectrometer (INST 162/490-1 FUGG). A.S. is supported by the German Federal Environmental Foundation (DBU, grant 31812-01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793.  https://doi.org/10.1128/AEM.03032-05 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163.  https://doi.org/10.1007/s002449900501 CrossRefPubMedGoogle Scholar
  3. Anadón A, Martínez-Larrañaga MR, Iturbe J, Martínez MA, Díaz MJ, Frejo MT, Martínez M (2001) Pharmacokinetics and residues of ciprofloxacin and its metabolites in broiler chickens. Res Vet Sci 71:101–109.  https://doi.org/10.1053/rvsc.2001.0494 CrossRefPubMedGoogle Scholar
  4. Ballesteros O, Sanz-Nebot V, Navalón A, Vílchez JL, Barbosa J (2004) Determination of a series of quinolone antibiotic using liquid chromatography-mass-spectrometry. Chromatographia 59:543–550.  https://doi.org/10.1365/s10337-004-0277-x CrossRefGoogle Scholar
  5. Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301.  https://doi.org/10.1016/j.chemosphere.2015.10.137 CrossRefPubMedGoogle Scholar
  6. Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soil into plants. J Agric Food Chem 54:2288–2297.  https://doi.org/10.1021/jf053041t CrossRefPubMedGoogle Scholar
  7. BVL (2016) GERMAP 2015 – Antibiotika-Resistenz und -Verbrauch. https://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2015.pdf?__blob=publicationFile&v=3. Accessed 20 Feb 2018
  8. Chen Y, Rosazza JPN, Reese CP, Chang H-Y, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384.  https://doi.org/10.1038/sj.jim.2900409 CrossRefPubMedGoogle Scholar
  9. Chowdhury F, Langenkämper G, Grote M (2016) Studies on uptake and distribution of antibiotics in red cabbage. J Verbrauch Lebensm 11:61–69.  https://doi.org/10.1007/s00003-015-1008-y CrossRefGoogle Scholar
  10. Čvančarová M, Moeder M, Filipová A, Reemtsma T, Cajthaml T (2013) Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures. Environ Sci Technol 47:14128–14136.  https://doi.org/10.1021/es403470s CrossRefPubMedGoogle Scholar
  11. Čvančarová M, Moeder M, Filipová A, Cajthaml T (2015) Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi - metabolites, enzymes and residual antibacterial activity. Chemosphere 136:311–320.  https://doi.org/10.1016/j.chemosphere.2014.12.012 CrossRefPubMedGoogle Scholar
  12. Dalla Bona M, Di Leva V, De Liguoro M (2014) The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 115:67–74.  https://doi.org/10.1016/j.chemosphere.2014.02.003 CrossRefPubMedGoogle Scholar
  13. Frade VMF, Dias M, Teixeira ACSC, Palma MSA (2014) Environmental contamination by fluoroquinolones. Braz J Pharm Sci 50:41–54.  https://doi.org/10.1590/S1984-82502011000100004 CrossRefGoogle Scholar
  14. Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Anal Chem 73:3632–3638.  https://doi.org/10.1021/ac0015265 CrossRefPubMedGoogle Scholar
  15. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243–3249.  https://doi.org/10.1021/es0264448 CrossRefPubMedGoogle Scholar
  16. Grobbel M, Lübke-Becker A, Wieler LH, Froyman R, Friederichs S, Filios S (2007) Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet Microbiol 124:73–81.  https://doi.org/10.1016/j.vetmic.2007.03.017 CrossRefPubMedGoogle Scholar
  17. Grote M, Meriç DH, Langenkämper G, Hayen H, Betsche T, Freitag M (2009) Untersuchungen zum Transfer pharmakologisch wirksamer Substanzen aus der Nutztierhaltung in Poree und Weißkohl. J Verbrauch Lebensm 4:287–304.  https://doi.org/10.1007/s00003-009-0316-5 CrossRefGoogle Scholar
  18. Holzgrabe U, Branch SK (1994) 1H, 19F and 13C NMR spectral data of fifteen gyrase inhibitors and some metabolites. Magn Reson Chem 32:192–196.  https://doi.org/10.1002/mrc.1260320313 CrossRefGoogle Scholar
  19. Hooper DC (1999) Mode of action of fluoroquinolones. Drugs 58:6–10.  https://doi.org/10.2165/00003495-199958002-00002 CrossRefPubMedGoogle Scholar
  20. Ihrke PJ, Papich MG, DeManuelle TC (1999) The use of fluoroquinolones in veterinary dermatology. Vet Dermatol 10:193–204.  https://doi.org/10.1046/j.1365-3164.1999.00179.x CrossRefGoogle Scholar
  21. Janusch F, Scherz G, Mohring SAI, Hamscher G (2014) Determination of fluoroquinolones in chicken feces—a new liquid-liquid extraction method combined with LC-MS/MS. Environ Toxicol Pharmacol 38:792–799.  https://doi.org/10.1016/j.etap.2014.09.011 CrossRefPubMedGoogle Scholar
  22. Karl W, Schneider J, Wetzstein H-G (2006) Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113.  https://doi.org/10.1007/s00253-005-0177-5 CrossRefPubMedGoogle Scholar
  23. Klinck RE, Stothers JB (1966) Nuclear magnetic resonance studies IX. The chemical shift of the formyl proton in aliphatic aldehydes. Can J Chem 44:45–51.  https://doi.org/10.1139/v66-008 CrossRefGoogle Scholar
  24. Marquez B, Pourcelle V, Vallet CM, Mingeot-Leclercq M-P, Tulkens PM, Marchand-Bruynaert J, Van Bambeke F (2014) Pharmacological characterization of 7-(4-(piperazin-1-yl)) ciprofloxacin derivatives: antibacterial activity, cellular accumulation, susceptibility to efflux transporters, and intracellular activity. Pharm Res 31:1290–1301.  https://doi.org/10.1007/s11095-013-1250-x CrossRefPubMedGoogle Scholar
  25. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579.  https://doi.org/10.1016/j.envpol.2006.11.035 CrossRefPubMedGoogle Scholar
  26. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668.  https://doi.org/10.1016/j.watres.2009.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244.  https://doi.org/10.1016/S0045-6535(03)00272-8 CrossRefPubMedGoogle Scholar
  28. Olicón-Hernández DR, González-López J, Aranda E (2017) Overview of the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792.  https://doi.org/10.3389/fmicb.2017.01792 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Papich MG, Riviere JE (2009) Fluoroquinolone antimicrobial drugs. In: Riviere JE, Papich MG (eds) Veterinary pharmacology and therapeutics, 9th edn. Wiley-Blackwell, Iowa, pp 983–1012Google Scholar
  30. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135.  https://doi.org/10.1111/j.1574-6968.1999.tb13723.x CrossRefPubMedGoogle Scholar
  31. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667.  https://doi.org/10.1128/AEM.66.6.2664-2667.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001a) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144.  https://doi.org/10.1038/sj/jim/7000077 CrossRefPubMedGoogle Scholar
  33. Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001b) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477.  https://doi.org/10.1007/s002530100672 CrossRefPubMedGoogle Scholar
  34. Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995.  https://doi.org/10.1016/j.biortech.2011.08.055 CrossRefPubMedGoogle Scholar
  35. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88.  https://doi.org/10.1038/nm1347 CrossRefPubMedGoogle Scholar
  36. Rusch M, Kauschat A, Spielmeyer A, Römpp A, Hausmann H, Zorn H, Hamscher G (2015) Biotransformation of the antibiotic danofloxacin by Xylaria longipes leads to an efficient reduction of its antibacterial activity. J Agric Food Chem 63:6897–6904.  https://doi.org/10.1021/acs.jafc.5b02343 CrossRefPubMedGoogle Scholar
  37. Rusch M, Spielmeyer A, Meißner J, Kietzmann M, Zorn H, Hamscher G (2017) Efficient reduction of antibacterial activity and cytotoxicity of fluoroquinolones by fungal-mediated N-oxidation. J Agric Food Chem 65:3118–3126.  https://doi.org/10.1021/acs.jafc.7b01246 CrossRefPubMedGoogle Scholar
  38. Slana M, Pahor V, Cvitkovič Maričič L, Sollner-Dolenc M (2014) Excretion pattern of enrofloxacin after oral treatment of chicken broilers. J Vet Pharmacol Ther 37:611–614.  https://doi.org/10.1111/jvp.12130 CrossRefPubMedGoogle Scholar
  39. Sörgel F (1989) Metabolism of gyrase inhibitors. Rev Infect Dis 11:S1119–S1129.  https://doi.org/10.1093/clinids/11.Supplement_5.S1119 CrossRefPubMedGoogle Scholar
  40. Vollmer DA, Mansoori B, Locke SJ (1997) Study of 4-quinolone antibiotics in biological samples by short-column liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Chem 69:4143–4155.  https://doi.org/10.1021/ac970425c CrossRefGoogle Scholar
  41. Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281PubMedPubMedCentralGoogle Scholar
  42. Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563PubMedPubMedCentralGoogle Scholar
  43. Wetzstein H-G, Schneider J, Karl W (2012) Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2:3.  https://doi.org/10.1186/2191-0855-2-3 CrossRefPubMedPubMedCentralGoogle Scholar
  44. WHO (2017) Critically important antimicrobials for human medicine, 5th revision. http://www.who.int/foodsafety/publications/antimicrobials-fifth/en/. Accessed 20 Feb 2018
  45. Williams AJ, Deck J, Freeman JP, Chiarelli MP, Adjei MD, Heinze TM, Sutherland JB (2007) Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere 67:240–243.  https://doi.org/10.1016/j.chemosphere.2006.10.016 CrossRefPubMedGoogle Scholar
  46. Zeiler HJ, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforsch 37:131–134PubMedGoogle Scholar
  47. Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075.  https://doi.org/10.1016/j.scitotenv.2009.11.014 CrossRefPubMedGoogle Scholar
  48. Zięba A, Maślankiewicz A, Sitkowski J (2004) 1H, 13C and 15N NMR spectra of ciprofloxacin. Magn Reson Chem 42:903–904.  https://doi.org/10.1002/mrc.1468 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations