Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8135–8143 | Cite as

Roles and applications of probiotic Lactobacillus strains

  • Zhongwang Zhang
  • Jianliang Lv
  • Li Pan
  • Yongguang Zhang
Mini-Review
  • 137 Downloads

Abstract

Lactobacilli are recognized as probiotics on account of their health-promoting effects in the host. The aim of this review is to summarize current knowledge of the mechanisms of the adaption factors and main functions of lactobacilli that exert health-promoting effects in the host and to discuss important applications in animal and human health. The adaption mechanisms of lactobacilli facilitate interactions with the host and directly contribute to the beneficial nutritional, physiological, microbiological, and immunological effects in the host. Besides, the application of probiotic lactobacilli will increase our understanding of practical uses based on the roles of these organisms in immunoregulation, antipathogenic activities, and enhancement of the epithelial barrier.

Keywords

Lactobacilli Immunoregulation Antipathogenic activities Probiotic strains Microbial homeostasis Competitive exclusion Epithelial barrier 

Notes

Funding information

This work was supported by grants from the National Key Research and Development Program of China (grant no. 2017YFD0501104), the National Natural Science Foundation of China (grant no. 31772780), the Key Technology R&D Program of Gansu Province of China (grant no. 1604NKCA045-2), and the China Agriculture Research System (grant no. CARS-35).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical statement

This article references no studies with human participants or animals performed by any of the authors.

References

  1. Abedin-Do A, Taherian-Esfahani Z, Ghafouri-Fard S, Ghafouri-Fard S, Motevaseli E (2015) Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells. Immunotherapy 7(12):1307–1329.  https://doi.org/10.2217/imt.15.92 CrossRefPubMedGoogle Scholar
  2. Ait Seddik H, Bendali F, Cudennec B, Drider D (2017) Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults. Res Microbiol 168(3):244–254.  https://doi.org/10.1016/j.resmic.2016.12.003 CrossRefPubMedGoogle Scholar
  3. Aktas B, De Wolfe TJ, Safdar N, Darien BJ, Steele JL (2016) The impact of Lactobacillus casei on the composition of the cecal microbiota and innate immune system is strain specific. PLoS One 11(5):e0156374.  https://doi.org/10.1371/journal.pone.0156374 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66(5):2001–2005CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alok A, Singh ID, Singh S, Kishore M, Jha PC, Iqubal MA (2017) Probiotics: a new era of biotherapy. Adv Biomed Res 6:31.  https://doi.org/10.4103/2277-9175.192625 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arena ME, Landete JM, Manca de Nadra MC, Pardo I, Ferrer S (2008) Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii XB isolated from wine. J Appl Microbiol 105(1):158–165.  https://doi.org/10.1111/j.1365-2672.2008.03725.x CrossRefPubMedGoogle Scholar
  7. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920.  https://doi.org/10.1126/science.1104816 CrossRefPubMedGoogle Scholar
  8. Bertuccini L, Russo R, Iosi F, Superti F (2017) Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens. Int J Immunopathol Pharmacol 30(2):163–167.  https://doi.org/10.1177/0394632017697987 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhandari P, Rishi P, Prabha V (2016) Positive effect of probiotic Lactobacillus plantarum in reversing the LPS induced infertility in mouse model. J Med Microbiol 65:345–350.  https://doi.org/10.1099/jmm.0.000230 CrossRefPubMedGoogle Scholar
  10. Black BA, Sun C, Zhao YY, Ganzle MG, Curtis JM (2013) Antifungal lipids produced by lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization-MS/MS. J Agric Food Chem 61(22):5338–5346.  https://doi.org/10.1021/jf400932g CrossRefPubMedGoogle Scholar
  11. Bond DM, Morris JM, Nassar N (2017) Study protocol: evaluation of the probiotic Lactobacillus fermentum CECT5716 for the prevention of mastitis in breastfeeding women: a randomised controlled trial. BMC Pregnancy Childbirth 17(1):148.  https://doi.org/10.1186/s12884-017-1330-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4(2):160–165CrossRefPubMedGoogle Scholar
  13. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT (2015) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J Appl Microbiol 118(5):1180–1190.  https://doi.org/10.1111/jam.12772 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cortes-Zavaleta O, Lopez-Malo A, Hernandez-Mendoza A, Garcia HS (2014) Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol 173:30–35.  https://doi.org/10.1016/j.ijfoodmicro.2013.12.016 CrossRefPubMedGoogle Scholar
  15. Crittenden RG, Martinez NR, Playne MJ (2003) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80(3):217–222CrossRefPubMedGoogle Scholar
  16. Davoodabadi A, Soltan Dallal MM, Lashani E, Tajabadi Ebrahimi M (2015) Antimicrobial activity of Lactobacillus spp. isolated from fecal Flora of healthy breast-fed infants against diarrheagenic Escherichia coli. Jundishapur J Microbiol 8(12):e27852.  https://doi.org/10.5812/jjm.27852 CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Gregorio PR, Juarez Tomas MS, Leccese Terraf MC, Nader-Macias ME (2014) In vitro and in vivo effects of beneficial vaginal lactobacilli on pathogens responsible for urogenital tract infections. J Med Microbiol 63(Pt 5):685–696.  https://doi.org/10.1099/jmm.0.069401-0 CrossRefPubMedGoogle Scholar
  18. de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J (2001) Probiotics—compensation for lactase insufficiency. Am J Clin Nutr 73(2 Suppl):421S–429SCrossRefPubMedGoogle Scholar
  19. Dec M, Puchalski A, Urban-Chmiel R, Wernicki A (2014) Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics. Poult Sci 93(10):2464–2472.  https://doi.org/10.3382/ps.2014-04025 CrossRefPubMedGoogle Scholar
  20. Dietrich CG, Kottmann T, Alavi M (2014) Commercially available probiotic drinks containing Lactobacillus casei DN-114001 reduce antibiotic-associated diarrhea. World J Gastroenterol 20(42):15837–15844.  https://doi.org/10.3748/wjg.v20.i42.15837 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dimitrijevic R, Ivanovic N, Mathiesen G, Petrusic V, Zivkovic I, Djordjevic B, Dimitrijevic L (2014) Effects of Lactobacillus rhamnosus LA68 on the immune system of C57BL/6 mice upon oral administration. J Dairy Res 81(2):202–207.  https://doi.org/10.1017/S0022029914000028 CrossRefPubMedGoogle Scholar
  22. Fernandez L, Cardenas N, Arroyo R, Manzano S, Jimenez E, Martin V, Rodriguez JM (2016) Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis 62(5):568–573.  https://doi.org/10.1093/cid/civ974 CrossRefPubMedGoogle Scholar
  23. Fuochi V, Petronio GP, Lissandrello E, Furneri PM (2015) Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int J Immunopathol Pharmacol 28(3):426–433.  https://doi.org/10.1177/0394632015590948 CrossRefPubMedGoogle Scholar
  24. Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Mulet AP, Fernandez-Calero T, Tiscornia I, Bollati-Fogolin M, Chambaud I, Foligne B, Montserrat A, Ramon D (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7(12):e52493.  https://doi.org/10.1371/journal.pone.0052493 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gruner D, Paris S, Schwendicke F (2016) Probiotics for managing caries and periodontitis: systematic review and meta-analysis. J Dent 48:16–25.  https://doi.org/10.1016/j.jdent.2016.03.002 CrossRefPubMedGoogle Scholar
  26. Hamdan AM, El-Sayed AF, Mahmoud MM (2016) Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J Appl Microbiol 120(4):1061–1073.  https://doi.org/10.1111/jam.13081 CrossRefPubMedGoogle Scholar
  27. Hutt P, Lapp E, Stsepetova J, Smidt I, Taelma H, Borovkova N, Oopkaup H, Ahelik A, Roop T, Hoidmets D, Samuel K, Salumets A, Mandar R (2016) Characterisation of probiotic properties in human vaginal lactobacilli strains. Microb Ecol Health Dis 27:30484.  https://doi.org/10.3402/mehd.v27.30484 CrossRefPubMedGoogle Scholar
  28. Iwamoto T, Suzuki N, Tanabe K, Takeshita T, Hirofuji T (2010) Effects of probiotic Lactobacillus salivarius WB21 on halitosis and oral health: an open-label pilot trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(2):201–208.  https://doi.org/10.1016/j.tripleo.2010.03.032 CrossRefPubMedGoogle Scholar
  29. Kaji R, Kiyoshima-Shibata J, Nagaoka M, Nanno M, Shida K (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513.  https://doi.org/10.4049/jimmunol.0901569 CrossRefPubMedGoogle Scholar
  30. Kaye EK (2017) Daily intake of probiotic lactobacilli may reduce caries risk in young children. J Evid Based Dent Pract 17(3):284–286.  https://doi.org/10.1016/j.jebdp.2017.07.005 CrossRefPubMedGoogle Scholar
  31. Keller MK, Bardow A, Jensdottir T, Lykkeaa J, Twetman S (2012) Effect of chewing gums containing the probiotic bacterium Lactobacillus reuteri on oral malodour. Acta Odontol Scand 70(3):246–250.  https://doi.org/10.3109/00016357.2011.640281 CrossRefPubMedGoogle Scholar
  32. Kishimoto M, Nomoto R, Mizuno M, Osawa R (2017) An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides. Biosci Microbiota Food Health 36(3):101–110.  https://doi.org/10.12938/bmfh.17-001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290.  https://doi.org/10.1146/annurev.micro.091208.073341 CrossRefPubMedGoogle Scholar
  34. Kotani S, Watanabe Y, Shimono T, Kinoshita F, Narita T (1975) Immunoadjuvant activities of peptidoglycan subunits from the cell walls of Staphyloccus aureus and Lactobacillus plantarum. Biken J 18(2):93–103PubMedGoogle Scholar
  35. Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E, Rosiak I, Hudcovic T, Schabussova I, Hermanova P, Zakostelska Z, Aleksandrzak-Piekarczyk T, Koryszewska-Baginska A, Tlaskalova-Hogenova H, Cukrowska B (2016) Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 13(2):251–262.  https://doi.org/10.1038/cmi.2015.09 CrossRefPubMedGoogle Scholar
  36. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–64, Table of Contents  https://doi.org/10.1128/MMBR.00017-08, 764CrossRefPubMedGoogle Scholar
  37. Lee J, Yang W, Hostetler A, Schultz N, Suckow MA, Stewart KL, Kim DD, Kim HS (2016) Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol 16:69.  https://doi.org/10.1186/s12866-016-0686-7 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lin X, Chen X, Tu Y, Wang S, Chen H (2017) Effect of probiotic lactobacilli on the growth of Streptococcus mutans and multispecies biofilms isolated from children with active caries. Med Sci Monit 23:4175–4181CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maeda M, Shibata A, Biswas G, Korenaga H, Kono T, Itami T, Sakai M (2014) Isolation of lactic acid bacteria from kuruma shrimp (Marsupenaeus japonicus) intestine and assessment of immunomodulatory role of a selected strain as probiotic. Mar Biotechnol (NY) 16(2):181–192.  https://doi.org/10.1007/s10126-013-9532-1 CrossRefGoogle Scholar
  40. McFarland LV (2010) Probiotics and diarrhea. Ann Nutr Metab 57(Suppl):10–11.  https://doi.org/10.1159/000309016 CrossRefPubMedGoogle Scholar
  41. Miettinen M, Lehtonen A, Julkunen I, Matikainen S (2000) Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 164(7):3733–3740CrossRefPubMedGoogle Scholar
  42. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53(2):599–606.  https://doi.org/10.1007/s00394-013-0568-9 CrossRefPubMedGoogle Scholar
  43. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8).  https://doi.org/10.3390/molecules22081255 CrossRefGoogle Scholar
  44. Munoz-Quezada S, Chenoll E, Vieites JM, Genoves S, Maldonado J, Bermudez-Brito M, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, Suarez A, Ramon D, Gil A (2013) Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 109(Suppl 2):S51–S62.  https://doi.org/10.1017/S0007114512005211 CrossRefPubMedGoogle Scholar
  45. Neeser JR, Granato D, Rouvet M, Servin A, Teneberg S, Karlsson KA (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10(11):1193–1199CrossRefPubMedGoogle Scholar
  46. Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y (2015) Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects. Lipids Health Dis 14:20.  https://doi.org/10.1186/s12944-015-0019-0 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Petersson LG, Magnusson K, Hakestam U, Baigi A, Twetman S (2011) Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontol Scand 69(6):321–327.  https://doi.org/10.3109/00016357.2011.568962 CrossRefPubMedGoogle Scholar
  48. Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S (2015) Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 6:81.  https://doi.org/10.3389/fphys.2015.00081 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Prado Acosta M, Ruzal SM, Cordo SM (2016) S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor. Int J Biol Macromol 92:998–1005.  https://doi.org/10.1016/j.ijbiomac.2016.07.096 CrossRefPubMedGoogle Scholar
  50. Reid JN, Bisanz JE, Monachese M, Burton JP, Reid G (2013) The rationale for probiotics improving reproductive health and pregnancy outcome. Am J Reprod Immunol 69(6):558–566.  https://doi.org/10.1111/aji.12086 CrossRefPubMedGoogle Scholar
  51. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52(7):988–997CrossRefPubMedPubMedCentralGoogle Scholar
  52. Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130(3):731–746.  https://doi.org/10.1053/j.gastro.2005.12.015 CrossRefPubMedGoogle Scholar
  53. Rocha-Ramirez LM, Perez-Solano RA, Castanon-Alonso SL, Moreno Guerrero SS, Ramirez Pacheco A, Garcia Garibay M, Eslava C (2017) Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. J Immunol Res 2017:4607491 doi: https://doi.org/10.1155/2017/4607491, 1, 14CrossRefGoogle Scholar
  54. Rodriguez G, Ruiz B, Faleiros S, Vistoso A, Marro ML, Sanchez J, Urzua I, Cabello R (2016) Probiotic compared with standard milk for high-caries children: a cluster randomized trial. J Dent Res 95(4):402–407.  https://doi.org/10.1177/0022034515623935 CrossRefPubMedGoogle Scholar
  55. Rong J, Zheng H, Liu M, Hu X, Wang T, Zhang X, Jin F, Wang L (2015) Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol 15:196.  https://doi.org/10.1186/s12866-015-0525-2 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rook GA, Brunet LR (2005) Microbes, immunoregulation, and the gut. Gut 54(3):317–320.  https://doi.org/10.1136/gut.2004.053785 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sajedinejad N, Paknejad M, Houshmand B, Sharafi H, Jelodar R, Shahbani Zahiri H, Noghabi KA (2017) Lactobacillus salivarius NK02: a potent probiotic for clinical application in mouthwash. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-017-9296-4 CrossRefGoogle Scholar
  58. Sanz Y (2011) Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr 94(6 Suppl):2000S–2005S.  https://doi.org/10.3945/ajcn.110.001172 CrossRefPubMedGoogle Scholar
  59. Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535.  https://doi.org/10.1111/j.1365-2249.2007.03587.x CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857.  https://doi.org/10.1126/science.aad8588 CrossRefPubMedGoogle Scholar
  61. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013) The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat Inflamm 2013:237921  https://doi.org/10.1155/2013/237921, 1, 16CrossRefGoogle Scholar
  62. Shanahan F (2012) A commentary on the safety of probiotics. Gastroenterol Clin N Am 41(4):869–876.  https://doi.org/10.1016/j.gtc.2012.08.006 CrossRefGoogle Scholar
  63. Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, Faseleh Jahromi M, Ho YW (2014) Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int 2014:927268  https://doi.org/10.1155/2014/927268, 1, 16CrossRefGoogle Scholar
  64. Sisto A, Luongo D, Treppiccione L, De Bellis P, Di Venere D, Lavermicocca P, Rossi M (2016) Effect of Lactobacillus paracasei culture filtrates and artichoke polyphenols on cytokine production by dendritic cells. Nutrients 8(10).  https://doi.org/10.3390/nu8100635 CrossRefPubMedCentralGoogle Scholar
  65. Smith JG, Nemerow GR (2008) Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3(1):11–19.  https://doi.org/10.1016/j.chom.2007.12.001 CrossRefPubMedGoogle Scholar
  66. Smith TJ, Rigassio-Radler D, Denmark R, Haley T, Touger-Decker R (2013) Effect of Lactobacillus rhamnosus LGG(R) and Bifidobacterium animalis ssp. lactis BB-12(R) on health-related quality of life in college students affected by upper respiratory infections. Br J Nutr 109(11):1999–2007.  https://doi.org/10.1017/S0007114512004138 CrossRefPubMedGoogle Scholar
  67. Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4(12):e413 doi: https://doi.org/10.1371/journal.pbio.0040413 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Su Y, Chen X, Liu M, Guo X (2017) Effect of three lactobacilli with strain-specific activities on the growth performance, faecal microbiota and ileum mucosa proteomics of piglets. J Anim Sci Biotechnol 8:52.  https://doi.org/10.1186/s40104-017-0183-3 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Suzuki N, Yoneda M, Tanabe K, Fujimoto A, Iha K, Seno K, Yamada K, Iwamoto T, Masuo Y, Hirofuji T (2014) Lactobacillus salivarius WB21—containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial. Oral Surg Oral Med Oral Pathol Oral Radiol 117(4):462–470.  https://doi.org/10.1016/j.oooo.2013.12.400 CrossRefPubMedGoogle Scholar
  70. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C, Kotsianidis I, Galanis A, Kourkoutas Y, Dimitrellou D, Chlichlia K (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One 11(2):e0147960.  https://doi.org/10.1371/journal.pone.0147960 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LM (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104(2):465–477.  https://doi.org/10.1111/j.1365-2672.2007.03558.x CrossRefPubMedGoogle Scholar
  72. Tomaro-Duchesneau C, Jones ML, Shah D, Jain P, Saha S, Prakash S (2014) Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int 2014:380316–380319.  https://doi.org/10.1155/2014/380316 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Turpin W, Humblot C, Thomas M, Guyot JP (2010) Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms. Int J Food Microbiol 143(3):87–102.  https://doi.org/10.1016/j.ijfoodmicro.2010.07.032 CrossRefPubMedGoogle Scholar
  74. Turroni F, Ventura M, Butto LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71(2):183–203.  https://doi.org/10.1007/s00018-013-1318-0 CrossRefPubMedGoogle Scholar
  75. Van den Abbeele P, Grootaert C, Possemiers S, Verstraete W, Verbeken K, Van de Wiele T (2009) In vitro model to study the modulation of the mucin-adhered bacterial community. Appl Microbiol Biotechnol 83(2):349–359.  https://doi.org/10.1007/s00253-009-1947-2 CrossRefPubMedGoogle Scholar
  76. Vandenplas Y, Huys G, Daube G (2015) Probiotics: an update. J Pediatr 91(1):6–21.  https://doi.org/10.1016/j.jped.2014.08.005 CrossRefGoogle Scholar
  77. Vizoso-Pinto MG, Saavedra L, Hebert EM, Raya Tonetti F, Albarracin L, Alvarez S, Kitazawa H, Villena J (2017) Draft genome sequence of immunobiotic Lactobacillus rhamnosus strain IBL027, a potential adjuvant for mucosal vaccine development. Genome Announc 5(50):e01268–e01217.  https://doi.org/10.1128/genomeA.01268-17 CrossRefPubMedPubMedCentralGoogle Scholar
  78. von Ossowski I, Pietila TE, Rintahaka J, Nummenmaa E, Makinen VM, Reunanen J, Satokari R, de Vos WM, Palva I, Palva A (2013) Using recombinant Lactococci as an approach to dissect the immunomodulating capacity of surface piliation in probiotic Lactobacillus rhamnosus GG. PLoS One 8(5):e64416.  https://doi.org/10.1371/journal.pone.0064416 CrossRefGoogle Scholar
  79. Wang M, Gao Z, Zhang Y, Pan L (2016) Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 100(13):5691–5701.  https://doi.org/10.1007/s00253-016-7557-x CrossRefPubMedGoogle Scholar
  80. Wang M, Pan L, Zhou P, Lv J, Zhang Z, Wang Y, Zhang Y (2015a) Protection against foot-and-mouth disease virus in guinea pigs via oral Administration of recombinant Lactobacillus plantarum expressing VP1. PLoS One 10(12):e0143750.  https://doi.org/10.1371/journal.pone.0143750 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang R, Chen S, Jin J, Ren F, Li Y, Qiao Z, Wang Y, Zhao L (2015) Survival of Lactobacillus casei strain Shirota in the intestines of healthy Chinese adults. Microbiol Immunol 59(5):268–276.  https://doi.org/10.1111/1348-0421.12249 CrossRefPubMedGoogle Scholar
  82. Wiese M, Eljaszewicz A, Helmin-Basa A, Andryszczyk M, Motyl I, Wieczynska J, Gackowska L, Kubiszewska I, Januszewska M, Michalkiewicz J (2015) Lactic acid bacteria strains exert immunostimulatory effect on H. pylori-induced dendritic cells. J Immunol Res 2015:106743  https://doi.org/10.1155/2015/106743, 1, 10CrossRefGoogle Scholar
  83. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575.  https://doi.org/10.1053/j.gastro.2006.11.022 CrossRefPubMedGoogle Scholar
  84. Yang X, Twitchell E, Li G, Wen K, Weiss M, Kocher J, Lei S, Ramesh A, Ryan EP, Yuan L (2015) High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity. Sci Rep 5:15004.  https://doi.org/10.1038/srep15004 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yoda K, Miyazawa K, Hosoda M, Hiramatsu M, Yan F, He F (2014) Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur J Nutr 53(1):105–115.  https://doi.org/10.1007/s00394-013-0506-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhongwang Zhang
    • 1
  • Jianliang Lv
    • 1
  • Li Pan
    • 1
    • 2
  • Yongguang Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouChina
  2. 2.Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations