Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8403–8417 | Cite as

Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets

  • Yu-Bei Jin
  • Wen-Tao Yang
  • Chun-Wei Shi
  • Bo Feng
  • Ke-Yan Huang
  • Guang-Xun Zhao
  • Qiong-Yan Li
  • Jing Xie
  • Hai-Bin Huang
  • Yan-Long Jiang
  • Jian-Zhong Wang
  • Guan Wang
  • Yuan-Huan Kang
  • Gui-Lian Yang
  • Chun-Feng Wang
Applied genetics and molecular biotechnology

Abstract

Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.

Keywords

TGEV S protein Lactobacillus plantarum Oral immunization DCpep B cells Immune response 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2017YFD0501000, 2017YFD0501200), National Natural Science Foundation of China (31672528, 31602092), Science and Technology Development Program of Jilin Province (20160519011JH, 20170204034NY, 20180520037JH), Special Funds for Industrial Innovation of Jilin Province (2016C063), “Thirteen Five-year Plan” for Sci & Tech Research Program of Jilin Education Department of P.R. China (JJKH20170318KJ), and the Doctoral Project sponsored by the Scientific Research Foundation of Jilin Agricultural University of China (201601).

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no competing interests.

Ethical approval

All applicable international and national guidelines for the care and use of piglets were followed.

References

  1. Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC, Mellins ED (2017) The other function: class II-restricted antigen presentation by B cells. Front Immunol 8:319CrossRefPubMedPubMedCentralGoogle Scholar
  2. Axelsson L, Rud I, Naterstad K, Blom H, Renckens B, Boekhorst J, Kleerebezem M, Hijum SV, Siezen RJ (2012) Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J Bacteriol 194(9):2391–2392CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boneparth A, Davidson A (2012) B-cell activating factor targeted therapy and lupus. Arthritis Res Ther 14(4):S2CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai R, Jiang Y, Yang W, Yang W, Shi S, Shi C, Hu J, Gu W, Ye L, Zhou F (2016) Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS. J Microbiol Biotechnol 26(2):421–431CrossRefPubMedGoogle Scholar
  5. Chen CY, Liu HJ, Tsai CP, Chung CY, Shih YS, Chang PC, Chiu YT, Hu YC (2010) Baculovirus as an avian influenza vaccine vector: differential immune responses elicited by different vector forms. Vaccine 28(48):7644–7651CrossRefPubMedGoogle Scholar
  6. Chen X, Tu C, Qin T, Zhu L, Yin Y, Yang Q (2016) Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8+ T-cell migration to the porcine gut. Sci Rep 6:24152CrossRefPubMedPubMedCentralGoogle Scholar
  7. Doyle LP, Hutchings LM (1946) A transmissible gastroenteritis in pigs. J Am Vet Med Assoc 108(3):257–259PubMedGoogle Scholar
  8. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2010) Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 28(1):243–273CrossRefPubMedGoogle Scholar
  9. Huang KY, Yang GL, Jin YB, Liu J, Chen HL, Wang PB, Jiang YL, Shi CW, Huang HB, Wang JZ (2017) Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res 247:84–93CrossRefPubMedGoogle Scholar
  10. Jiang X, Yu M, Qiao X, Min L, Tang L, Jiang Y, Wen C, Li Y (2014) Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. Appl Microbiol Biotechnol 98(19):554–555CrossRefGoogle Scholar
  11. Jiang Y, Hu J, Guo Y, Yang W, Ye L, Shi C, Liu Y, Yang G, Wang C (2015) Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing HN of Newcastle disease virus and DC-targeting peptide fusion protein. J Biotechnol 216:82–89CrossRefPubMedGoogle Scholar
  12. Jiang X, Hou X, Tang L, Jiang Y, Ma G, Li Y (2016) A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection. Appl Microbiol Biotechnol 100(17):7457–7469CrossRefPubMedGoogle Scholar
  13. Jiang Y, Yang G, Qi W, Wang Z, Yang W, Wei G, Shi C, Wang J, Huang H, Wang C (2017) Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB. J Biotechnol 259:6–14CrossRefPubMedGoogle Scholar
  14. Jin YB, Yang WT, Huang KY, Chen HL, Shonyela SM, Liu J, Liu Q, Feng B, Zhou Y, Zhi SL (2017) Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies. Biosci Biotechnol Biochem 26(20):1Google Scholar
  15. Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G, Saif LJ (2014) Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 5(5):639–651CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kathania M, Zadeh M, Lightfoot YL, Roman RM, Sahay B, Abbott JR, Mohamadzadeh M (2013) Colonic immune stimulation by targeted oral vaccine. PLoS One 8(1):e55143CrossRefPubMedPubMedCentralGoogle Scholar
  17. König H, Fröhlich J (2017) Lactic acid bacteria. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer International Publishing, Cham, pp 3–41CrossRefGoogle Scholar
  18. Krimmling T, Beineke A, Schwegmann-Weßels C (2017) Infection of porcine precision cut intestinal slices by transmissible gastroenteritis coronavirus demonstrates the importance of the spike protein for enterotropism of different virus strains. Vet Microbiol 205:1–5CrossRefPubMedGoogle Scholar
  19. Kuczkowska K, Kleiveland CR, Minic R, Moen LF, Øverland L, Tjåland R, Carlsen H, Lea T, Mathiesen G, Eijsink VG (2016) Immunogenic properties of Lactobacillus plantarum producing surface-displayed Mycobacterium tuberculosis antigens. Appl Environ Microbiol 83(2):AEM.02782–16CrossRefGoogle Scholar
  20. Kurashima Y, Kiyono H (2017) Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 35:119–147CrossRefPubMedGoogle Scholar
  21. Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, Phipson B, Shi W, Smyth GK, Lew AM, Kato Y, Mueller SN, Davey GM, Heath WR, Shortman K, Caminschi I (2011) Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol (Baltimore, Md : 1950) 187(2):842CrossRefGoogle Scholar
  22. Lei H, Peng X, Zhao D, Ouyang J, Jiao H, Shu H, Ge X (2015) Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza a viruses in mice. Virology 476:189–195CrossRefPubMedGoogle Scholar
  23. Liu D, Wang X, Ge J, Liu S, Li Y (2011) Comparison of the immune responses induced by oral immunization of mice with Lactobacillus casei-expressing porcine parvovirus VP2 and VP2 fused to Escherichia coli heat-labile enterotoxin B subunit protein. Comp Immunol Microbiol Infect Dis 34(1):73–81CrossRefPubMedGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mizoguchi A, Bhan AK (2017) Immunobiology of B Cells in Inflammatory Bowel Disease. Crohn's Disease and Ulcerative Colitis. Springer International Publishing, Cham, pp111-117CrossRefGoogle Scholar
  26. Mohamadzadeh M, Duong T, Hoover T, Klaenhammer TR (2008) Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev Vaccines 7(2):163–174CrossRefPubMedGoogle Scholar
  27. Mou C, Zhu L, Xing X, Qian Y (2015) Expression of major antigenic sites a and D in S gene of transmissible gastroenteritis virus of swine (TGEV) in Escherichia coli and development of indirect ELISA for detection of the antibody against TGEV. Chin Vet Sci 45:356–360Google Scholar
  28. Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70(5):564–572CrossRefPubMedGoogle Scholar
  29. Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 13(6):668–677CrossRefPubMedGoogle Scholar
  30. Olivares M, Díaz-Ropero MP, Sierra S, Lara-Villoslada F, Fonollá J, Navas M, Rodríguez JM, Xaus J (2007) Oral intake of lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23(3):254–260CrossRefPubMedGoogle Scholar
  31. Peng J-Y, Jian C-Z, Chang C-Y, Chang H-W (2017) Porcine epidemic diarrhea. Emerging and Re-emerging Infectious Diseases of Livestock. Springer, Berlin, pp 273–283CrossRefGoogle Scholar
  32. Raha AR, Varma NRS, Yusoff K, Ross E, Foo HL (2005) Cell surface display system for lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 68(1):75–81CrossRefPubMedGoogle Scholar
  33. Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2016) Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol 9(4):907–916CrossRefPubMedGoogle Scholar
  34. Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT Food Sci Technol 50(1):1–16CrossRefGoogle Scholar
  35. Sahay B, Owen JL, Yang T, Zadeh M, Lightfoot YL, Ge JW, Mohamadzadeh M (2013) Activation of B cells by a dendritic cell-targeted oral vaccine. Curr Pharm Biotechnol 14(10):867–877CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189CrossRefPubMedGoogle Scholar
  37. Sewaki T (2010) Generation of mucosal vaccine utilizing lactobacillus display system. Yakugaku Zasshi 41(18):1327Google Scholar
  38. Shao-Hua S, Wen-Tao Y, Gui-Lian Y, Xu-Ke Z, Yu-Ying L, Li-Jiao Z, Li-Ping Y, Jing-Tao H, Chong Q, Yu L (2016) Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection. Virus Res 211:46–57CrossRefGoogle Scholar
  39. Shonyela SM, Wang G, Yang WT, Yang GL, Wang CF (2017) New progress regarding the use of lactic acid bacteria as live delivery vectors, treatment of diseases and induction of immune responses in different host species focusing on lactobacillus species. WJV 07(4):43–75CrossRefGoogle Scholar
  40. Sinkora M, Sinkorova J (2014) B cell lymphogenesis in swine is located in the bone marrow. J Immunol 193(10):5023–5032CrossRefPubMedGoogle Scholar
  41. Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234(1):5–17CrossRefPubMedGoogle Scholar
  42. Subramaniam S, Cao D, Tian D, Cao QM, Overend C, Yugo DM, Matzinger SR, Rogers AJ, Heffron CL, Catanzaro N, Kenney SP, Opriessnig T, Huang Y-W, Labarque G, Wu SQ, Meng X-J (2017) Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs. Virus Res 227:212–219.  https://doi.org/10.1016/j.virusres.2016.10.007 CrossRefPubMedGoogle Scholar
  43. Tokunaga M, Fujii K, Saito K, Nakayamada S, Tsujimura S, Nawata M, Tanaka Y (2005) Down-regulation of CD40 and CD80 on B cells in patients with life-threatening systemic lupus erythematosus after successful treatment with rituximab. Rheumatology 44(2):176–182CrossRefPubMedGoogle Scholar
  44. Trombert A (2015) Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination? Benefic Microbes 6(3):1–12CrossRefGoogle Scholar
  45. Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M, Shao L, Rajashekara G, Saif LJ (2013) Lactobacilli and Bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS One 8(10):e76962CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang D, Fang L, Xiao S (2016) Porcine epidemic diarrhea in China. Virus Res 226:7–13CrossRefPubMedGoogle Scholar
  47. Wen K, Azevedo MSP, Gonzalez A, Zhang W, Saif LJ, Li GH, Yousef A, Yuan LJ (2009) Toll-like receptor and innate cytokine responses induced by Lactobacilli colonization and human rotavirus infection in gnotobiotic pigs. Vet Immunol Immunopathol 127(3–4):304–315CrossRefPubMedGoogle Scholar
  48. Yang WT, Shi SH, Yang GL, Jiang YL, Zhao L, Li Y, Wang CF (2016) Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum. Sci Rep 6:39665.  https://doi.org/10.1038/srep39665 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yang G, Yao J, Yang W, Jiang Y, Du J, Huang H, Gu W, Hu J, Ye L, Shi C (2017a) Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide. Vet Parasitol 236:7–13CrossRefPubMedGoogle Scholar
  50. Yang W-T, Yang G-L, Shi S-H, Liu Y-Y, Huang H-B, Jiang Y-L, Wang J-Z, Shi C-W, Jing Y-B, Wang C-F (2017b) Protection of chickens against H9N2 avian influenza virus challenge with recombinant Lactobacillus plantarum expressing conserved antigens. Appl Microbiol Biotechnol 101(11):4593–4603CrossRefPubMedGoogle Scholar
  51. Yang W-T, Yang G-L, Yang X, Shonyela S-M, Zhao L, Jiang Y-L, Huang H-B, Shi C-W, Wang J-Z, Wang G (2017c) Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl Microbiol Biotechnol 101(23–24):8475–8484CrossRefPubMedGoogle Scholar
  52. Zhao S, Gao Q, Qin T, Yin Y, Lin J, Yu Q, Yang Q (2014) Effects of virulent and attenuated transmissible gastroenteritis virus on the ability of porcine dendritic cells to sample and present antigen. Vet Microbiol 171(1–2):74–86CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Bei Jin
    • 1
  • Wen-Tao Yang
    • 1
  • Chun-Wei Shi
    • 1
  • Bo Feng
    • 1
  • Ke-Yan Huang
    • 1
  • Guang-Xun Zhao
    • 1
  • Qiong-Yan Li
    • 1
  • Jing Xie
    • 1
  • Hai-Bin Huang
    • 1
  • Yan-Long Jiang
    • 1
  • Jian-Zhong Wang
    • 1
  • Guan Wang
    • 1
  • Yuan-Huan Kang
    • 1
  • Gui-Lian Yang
    • 1
  • Chun-Feng Wang
    • 1
  1. 1.College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality SecurityJilin Agricultural UniversityChangchunChina

Personalised recommendations