Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8389–8402 | Cite as

Rational engineering of Cel5E from Clostridium thermocellum to improve its thermal stability and catalytic activity

  • Ibrahim Torktaz
  • Ali Asghar Karkhane
  • Jafar Hemmat
Biotechnologically relevant enzymes and proteins
  • 128 Downloads

Abstract

The celH gene from Clostridium thermocellum encodes a protein containing 900 residues and three components, including Cel5E, Lic26a, and carbohydrate-binding domains. Cel5E is a member of the glycoside hydrolase-5 family and is a bifunctional xylanase/cellulase enzyme. We targeted a semi-hydrophobic pocket near the Cel5E active site and theoretically screened mutated variants for enhanced levels of thermal stability. Cel5E mutations were inserted into celH by overlapping polymerase chain reaction, followed by expression of wild-type and mutant enzymes in Escherichia coli BL21 (DE3) and purification by affinity chromatography. Thermal-stabilizing mutations were subjected to molecular dynamics simulation, and measurement of the in vacuo potential energy, van der Waals forces, electrostatic interactions, and net nonbonded potential energies obtained an overall binding affinity of − 64.964 KJ/mol for wild-type Cel5E and − 176.148, − 200.921, and − 120.038 KJ/mol for the N94F, N94W, and E133F mutants, respectively. Additionally, the N94W, N94F, E133F, and N94A variants exhibited 1.92-, 1.29-, 1.1-, and 1.15-fold better carboxymethyl cellulase (CMCase) and 1.46-, 1.29-, 1.11-, and 1.12-fold better β-glucanase activity on barley β-glucan relative to the wild-type enzyme. Interestingly, the optimal temperature for CMCase activity by the N94W variant was shifted 2 °C higher than that for the wild-type enzyme. Mutated variants showed improved CMCase and β-glucanase activity and shifted toward higher temperature of maximum activity.

Keywords

Clostridium thermocellum celH Cel5E Rational mutagenesis Activity 

Notes

Funding information

The Iranian National Institute of Genetic Engineering and Biotechnology and Iran National Science Foundation (INSF; grant No. 96003289) supported this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study does not contain any experiments involving human participants or animals performed by any of the authors.

Supplementary material

253_2018_9204_MOESM1_ESM.pdf (374 kb)
ESM 1 (PDF 374 kb)

References

  1. Arakawa T, Tokunaga M (2004) Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins. Protein Pept Lett 11(2):125–132CrossRefPubMedGoogle Scholar
  2. Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109(1):31–44.  https://doi.org/10.1002/bit.23280 CrossRefPubMedGoogle Scholar
  3. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71(1):261–277.  https://doi.org/10.1002/prot.21715 CrossRefPubMedGoogle Scholar
  4. Bergquist P, Te'o V, Gibbs M, Cziferszky A, de Faria FP, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6(3):177–184.  https://doi.org/10.1007/s00792-001-0252-5 CrossRefPubMedGoogle Scholar
  5. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(Web Server issue):W306–W310.  https://doi.org/10.1093/nar/gki375 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics 14(Suppl 2):S5.  https://doi.org/10.1186/1471-2105-14-S2-S5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62(4):1125–1132.  https://doi.org/10.1002/prot.20810 CrossRefPubMedGoogle Scholar
  8. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250.  https://doi.org/10.1007/978-1-4939-2269-7_19 CrossRefPubMedGoogle Scholar
  9. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12:151.  https://doi.org/10.1186/1471-2105-12-151 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dosztanyi Z, Magyar C, Tusnady G, Simon I (2003) SCide: identification of stabilization centers in proteins. Bioinformatics 19(7):899–900CrossRefPubMedGoogle Scholar
  11. Eijsink VG, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113(1–3):105–120.  https://doi.org/10.1016/j.jbiotec.2004.03.026 CrossRefPubMedGoogle Scholar
  12. Escovar-Kousen JM, Wilson D, Irwin D (2004) Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca. Appl Biochem Biotechnol 113(1-3):287–298Google Scholar
  13. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491.  https://doi.org/10.1016/S0076-6879(03)74020-8 CrossRefPubMedGoogle Scholar
  14. Gusakov AV, Kondratyeva EG, Sinitsyn AP (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem 2011:283658.  https://doi.org/10.1155/2011/283658 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447.  https://doi.org/10.1021/ct700301q CrossRefGoogle Scholar
  16. Hirano K, Kurosaki M, Nihei S, Hasegawa H, Shinoda S, Haruki M, Hirano N (2016) Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep 6:35709.  https://doi.org/10.1038/srep35709 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77(1):51–59CrossRefPubMedGoogle Scholar
  18. Ichikawa S, Yoshida M, Karita S, Kondo M, Goto M (2015) Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum. Biosci Biotechnol Biochem 80(1):188–192.  https://doi.org/10.1080/09168451.2015.1069696 CrossRefPubMedGoogle Scholar
  19. Kellis JT Jr, Nyberg K, Sali D, Fersht AR (1988) Contribution of hydrophobic interactions to protein stability. Nature 333(6175):784–786.  https://doi.org/10.1038/333784a0 CrossRefPubMedGoogle Scholar
  20. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49(1):84–96.  https://doi.org/10.1021/ci800298z CrossRefPubMedGoogle Scholar
  21. Kumari R, Kumar R, Open Source Drug Discovery C, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962.  https://doi.org/10.1021/ci500020m CrossRefPubMedGoogle Scholar
  22. Mahadevan SA, Wi SG, Lee DS, Bae HJ (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287(2):205–211.  https://doi.org/10.1111/j.1574-6968.2008.01324.x CrossRefPubMedGoogle Scholar
  23. Mehboob N, Asad MJ, Asgher M, Gulfraz M, Mukhtar T, Mahmood RT (2014) Exploring thermophilic cellulolytic enzyme production potential of Aspergillus fumigatus by the solid-state fermentation of wheat straw. Appl Biochem Biotechnol 172(7):3646–3655.  https://doi.org/10.1007/s12010-014-0796-3 CrossRefPubMedGoogle Scholar
  24. Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S (2006) Thermal stabilization of family-11 xylanase by directed evolution. J Biol Chem 281(15):10236–10242Google Scholar
  25. Moretti MM, Bocchini-Martins DA, Silva RD, Rodrigues A, Sette LD, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 43(3):1062–1071.  https://doi.org/10.1590/S1517-838220120003000032 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nick Pace C, Scholtz JM, Grimsley GR (2014) Forces stabilizing proteins. FEBS Lett 588(14):2177–2184.  https://doi.org/10.1016/j.febslet.2014.05.006 CrossRefPubMedGoogle Scholar
  28. Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP, Hedlund BP (2013) Pyrosequencing reveals high-temperature cellulolytic microbial consortia in great boiling spring after in situ lignocellulose enrichment. PLoS One 8(3):e59927.  https://doi.org/10.1371/journal.pone.0059927 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  30. Pikkemaat MG, Linssen AB, Berendsen HJ, Janssen DB (2002) Molecular dynamics simulations as a tool for improving protein stability. Protein Eng 15(3):185–192CrossRefPubMedGoogle Scholar
  31. Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234CrossRefPubMedGoogle Scholar
  32. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854.  https://doi.org/10.1093/bioinformatics/btt055 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35(Web Server issue):W126–W131.  https://doi.org/10.1093/nar/gkm219 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Radhakrishna M, Grimaldi J, Belfort G, Kumar SK (2013) Stability of proteins inside a hydrophobic cavity. Langmuir 29(28):8922–8928.  https://doi.org/10.1021/la4014784 CrossRefPubMedGoogle Scholar
  35. Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(Pt 8):1355–1363.  https://doi.org/10.1107/S0907444904011679 CrossRefPubMedGoogle Scholar
  36. Tan KP, Nguyen TB, Patel S, Varadarajan R, Madhusudhan MS (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41(Web Server issue):W314–W321.  https://doi.org/10.1093/nar/gkt503 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321.  https://doi.org/10.1021/jm051197e CrossRefPubMedGoogle Scholar
  38. Vu VH, Kim K (2012) Improvement of cellulase activity using error-prone rolling circle amplification and site-directed mutagenesis. J Microbiol Biotechnol 22(5):607–613CrossRefPubMedGoogle Scholar
  39. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410.  https://doi.org/10.1093/nar/gkm290 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wu TH, Huang CH, Ko TP, Lai HL, Ma Y, Chen CC, Cheng YS, Liu JR, Guo RT (2011) Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta 1814(12):1832–1840.  https://doi.org/10.1016/j.bbapap.2011.07.020 CrossRefPubMedGoogle Scholar
  41. Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289(11):7994–8006.  https://doi.org/10.1074/jbc.M113.536045 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yague E, Beguin P, Aubert JP (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89(1):61–67CrossRefPubMedGoogle Scholar
  43. Yuan SF, Wu TH, Lee HL, Hsieh HY, Lin WL, Yang B, Chang CK, Li Q, Gao J, Huang CH, Ho MC, Guo RT, Liang PH (2015) Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J Biol Chem 290(9):5739–5748.  https://doi.org/10.1074/jbc.M114.604454 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang J, Shi H, Xu L, Zhu X, Li X (2015) Site-directed mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PLoS One 10(7):e0133824.  https://doi.org/10.1371/journal.pone.0133824 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran
  2. 2.Biotechnology DepartmentIranian Research Organization for Science and Technology (IROST)TehranIran

Personalised recommendations