Applied Microbiology and Biotechnology

, Volume 102, Issue 18, pp 7981–7995 | Cite as

Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production

  • Li Hou
  • Ling Liu
  • Hongfei Zhang
  • Lin Zhang
  • Lan Zhang
  • Jian Zhang
  • Qiang Gao
  • Depei WangEmail author
Applied Genetics and Molecular Biotechnology


In this work, we constructed the aox1 disruption strains 3–4 and 4–10, as well as the aox1 overexpression strains 72 and 102 in Aspergillus niger. The energy metabolism, EMP, TCA pathways, and flux were investigated for the citric acid (CA) overproduction via the aox1 overexpression among them. As expected, the overexpression of the aox1 gene enabled a higher growth rate than that of the rate of its parent strain in medium with respiratory chain inhibitors. In liquefied corn starch medium supplemented with 0.2 μg/mL antimycin A, the CA production of the overexpression strain 102 reached up to 169.1 g/L, whereas the highest value of the parent strain was 158.9 g/L. For the perspective of the aox1 disruption strain 4–10, the yield of CA dropped to 125.6 g/L, and the loose mycelial pellets forming in the medium also revealed that the fundamentally important role of AOX in A. niger lies in the resistance to oxidative stress under fully aerobic conditions. Based on real-time qPCR gene expression analysis and measurement of intracellular ATP and NADH levels, we came to a conclusion that the higher NADH oxidation rate resulting from the overexpression of the aox1 gene mainly contributed to rate-limited step’s acceleration and strengthened metabolic flow via mycelia and led to the CA yield in these strains increased by 13.5 and 10.8%, respectively. Subsequently, it was found that overexpression strains had higher AOX relative content and more oxygen consumption at different fermentation stages, which fully confirmed the close relationship between aox1 gene and energy metabolism, and comprehensively revealed aox1 gene function through the combination with the above conclusions.


Aspergillus niger Citric acid aox1 gene disruption and overexpression Respiratory inhibitors Energy metabolism Real-time qPCR 



This work was financially supported by RZBC Co., Ltd., Shandong, China; Shandong Provincial Key R&D Project of China (Fostering Talent Project) (No. 2016GRC3201); and the National Natural Science Foundation of China (31471725, 31370075).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interest.


  1. Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47:1509–1519CrossRefPubMedGoogle Scholar
  2. Amor Y, Chevion M, Levine A (2000) Anoxia pretreatment protects soybean cells against H2O2-induced cell death, possible involvement of peroxidases and of alternative oxidase. FEBS Lett 477:175–180CrossRefGoogle Scholar
  3. Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109:150–158CrossRefPubMedGoogle Scholar
  4. Arnholdt-Schmitt B, Costa JH, De Melo DF (2006) AOX - a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 11:281–287CrossRefPubMedGoogle Scholar
  5. Bai Z, Harvey LM, McNeil B (2003) Physiological responses of chemostat cultures of Aspergillus niger (B1-D) to simulated and actual oxidative stress. Biotechnol Bioeng 82:691–701CrossRefPubMedGoogle Scholar
  6. Berrı́ SJ, Bennett GN, San KY (2002) Metabolic engineering of Escherichia coli, increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4:217–229CrossRefGoogle Scholar
  7. Berthold DA, Andersson ME, Nordlund P (2000) New insight into the structure and function of the alternative oxidase. BBA-Bioenergetics 1460:241–254CrossRefPubMedGoogle Scholar
  8. Cabrera-Orefice A, Chiquete-Félix N, Espinasa-Jaramillo J, Rosas-Lemus M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S (2014) The branched mitochondrial respiratory chain from Debaryomyces hansenii, components and supramolecular organization. BBA-Bioenergetics 1837:73–84CrossRefPubMedGoogle Scholar
  9. Campos C, Cardoso H, Nogales A, Svensson J, Lopez-Ráez JA, Pozo MJ, Nobre T, Schneider C, Arnholdt-Schmitt B (2015) Intra and inter-spore variability in Rhizophagus irregularis AOX gene. PLoS One 10:e0142339CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Jongh WA, Nielsen J (2008) Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10:87–96CrossRefPubMedGoogle Scholar
  11. Douce R, Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Biol 40:371–414CrossRefGoogle Scholar
  12. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism, glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261CrossRefPubMedGoogle Scholar
  13. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732CrossRefPubMedGoogle Scholar
  14. Fu LH, Hu KD, Hu LY, Li YH, Hu LB, Yan H, Liu YS, Zhang H (2014) An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS One 9:e104206CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guerrero-Castillo S, Araiza-Olivera D, Cabrera-Orefice A, Espinasa-Jaramillo J, Gutiérrez-Aguilar M, Luévano-Martínez LA, Zepeda-Bastida A, Uribe-Carvajal S (2011) Physiological uncoupling of mitochondrial oxidative phosphorylation studies in different yeast species. J Bioenerg Biomembr 43:323–331CrossRefPubMedGoogle Scholar
  16. Guerrero-Castillo S, Cabrera-Orefice A, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S (2012) During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. BBA-Bioenergetics 1817:353–362CrossRefPubMedGoogle Scholar
  17. Haq IU, Ali S, Iqbal J (2003) Direct production of citric acid from raw starch by Aspergillus niger. Process Biochem 38:921–924CrossRefGoogle Scholar
  18. Hattori T, Honda Y, Kino K, Kirimura K (2008) Expression of alternative oxidase gene (aox1) at the stage of single-cell conidium in citric acid-producing Aspergillus niger. J Biosci Bioeng 105:55–57CrossRefPubMedGoogle Scholar
  19. Hattori T, Kino K, Kirimura K (2009) Regulation of alternative oxidase at the transcription stage in Aspergillus niger under the conditions of citric acid production. Curr Microbiol 58:321–325CrossRefPubMedGoogle Scholar
  20. Honda Y, Hattori T, Kirimura K (2012) Visual expression analysis of the responses of the alternative oxidase gene (aox1) to heat shock, oxidative, and osmotic stresses in conidia of citric acid-producing Aspergillus niger. J Biosci Bioeng 113:338–342CrossRefPubMedGoogle Scholar
  21. Joseph-Horne T, Hollomon DW, Wood PM (2001) Fungal respiration: a fusion of standard and alternative components. BBA-Bioenergetics 1504:179–195CrossRefPubMedGoogle Scholar
  22. Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation, do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196CrossRefPubMedGoogle Scholar
  23. Karaffa L, Váczy K, Sándor E, Biró S, Szentirmai A, Pócsi I (2011) Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels in Acremonium chrysogenum. Free Radic Res 34:405–416CrossRefGoogle Scholar
  24. Kern A, Hartner FS, Freigassner M, Spielhofer J, Rumpf C, Leitner L, Fröhlich KU, Glieder A (2007) Pichia pastoris ‘just in time’alternative respiration. Microbiology 153:1250–1260CrossRefPubMedGoogle Scholar
  25. Kirimura K, Yoda M, Usami S (1999) Cloning and expression of the cDNA encoding an alternative oxidase gene from Aspergillus niger WU-2223L. Curr Genet 34:472–477CrossRefPubMedGoogle Scholar
  26. Kohtaro K, Masashi Y, Hideki S (2000) Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase, to citric acid production in Aspergillus niger. Biosci Biotechnol Biochem 64:2034–2039CrossRefGoogle Scholar
  27. Kubicek CP, Zehentgruber O, Housam E (1980) Regulation of citric acid production by oxygen: effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Appl Microbiol Biotechnol 9:101–115CrossRefGoogle Scholar
  28. Lambers H (1982) Cyanide-resistant respiration: a non-phosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55:478–485CrossRefGoogle Scholar
  29. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967CrossRefGoogle Scholar
  30. Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29:199–213CrossRefPubMedGoogle Scholar
  31. Luttik MA, Overkamp KM, Kötter P, de Vries S, van Dijken JP, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534CrossRefPubMedGoogle Scholar
  32. Magnani T, Soriani FM, Martins VP, Nascimento AM, Tudella VG, Curti C, Uyemura SA (2007) Cloning and functional expression of the mitochondrial alternative oxidase of Aspergillus fumigatus and its induction by oxidative stress. FEMS Microbiol Lett 271:230–238CrossRefPubMedGoogle Scholar
  33. Martins VP, Dinamarco TM, Soriani FM, Tudella VG, Oliveira SC, Goldman GH, Curti C, Uyemura SA (2011) Involvement of an alternative oxidase in oxidative stress and mycelium-to-yeast differentiation in Paracoccidioides brasiliensis. Eukaryot Cell 10:237–248CrossRefPubMedPubMedCentralGoogle Scholar
  34. Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276CrossRefPubMedPubMedCentralGoogle Scholar
  35. Medentsev AG, Arinbasarova AY, Golovchenko NP, Akimenko VK (2002) Involvement of the alternative oxidase in respiration of Yarrowia lipolytica mitochondria is controlled by the activity of the cytochrome pathway. FEMS Yeast Res 2:519–524PubMedGoogle Scholar
  36. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104CrossRefPubMedGoogle Scholar
  37. Minagawa N, Koga S, Nakano M, Sakajo S, Yoshimoto A (1992) Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett 302:217–219CrossRefPubMedGoogle Scholar
  38. Papagianni M, Avramidis N (2012a) Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions. Enzym Microb Technol 50:17–21CrossRefGoogle Scholar
  39. Papagianni M, Avramidis N (2012b) Engineering the central pathways in Lactococcus lactis, functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Enzym Microb Technol 51:125–130CrossRefGoogle Scholar
  40. Rogov AG, Zvyagilskaya RA (2015) Physiological role of alternative oxidase (from yeasts to plants). Biochem Mosc 80:400–407CrossRefGoogle Scholar
  41. Ruijter GJG, Panneman H, Visser J (1997) Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim Biophys Acta Gen Subj 1334:317–326CrossRefGoogle Scholar
  42. Ruijter GJG, Panneman H, Xu DB, Visser J (2000) Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett 184:35–40CrossRefPubMedGoogle Scholar
  43. Sakajo S, Minagawa N, Komiyama T, Yoshimoto A (1991) Molecular cloning of cDNA for antimycin A-inducible mRNA and its role in cyanide-resistant respiration in Hansenula anomala. Biochim Biophys Acta Gene Struct Expr 1090:102–108CrossRefGoogle Scholar
  44. Searle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH (2011) Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytol 189:1027–1039CrossRefPubMedGoogle Scholar
  45. Siedow JN, Umbach AL (2000) The mitochondrial cyanide-resistant oxidase, structural conservation amid regulatory diversity. BBA-Bioenergetics 1459:432–439CrossRefPubMedGoogle Scholar
  46. Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, Inzé D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stanić M, Zakrzewska J, Hadžibrahimović M, Zižić M, Marković Z, Vučinić Z, Zivić M (2013) Oxygen regulation of alternative respiration in fungus Phycomyces blakesleeanus, connection with phosphate metabolism. Res Microbiol 164:770–778CrossRefPubMedGoogle Scholar
  48. Theologis A, Laties GG (1978) Relative contribution of cytochrome-mediated and cyanide-resistant electron transport in fresh and aged potato slices. Plant Physiol 62:232–237CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thomsson E, Larsson C, Albers E, Nilsson A, Franzén CJ, Gustafsson L (2003) Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae. Appl Environ Microbiol 69:3251–3257CrossRefPubMedPubMedCentralGoogle Scholar
  50. Uribe D, Khachatourians GG (2009) Identification and characterization of an alternative oxidase in the entomopathogenic fungus Metarhizium anisopliae. Can J Microbiol 54:119–127CrossRefGoogle Scholar
  51. Van Aken O, Giraud E, Clifton R, Whelan J (1998) Alternative oxidase: a target and regulator of stress responses. Physiol Plant 137:354–361CrossRefGoogle Scholar
  52. Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D (2015) Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Factories 14:1CrossRefGoogle Scholar
  53. Wang L, Cao Z, Hou L, Yin L, Wang D, Gao Q, Wu Z, Wang D (2016) The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Appl Microbiol Biotechnol 100:5791–5803CrossRefPubMedGoogle Scholar
  54. Yan L, Li M, Cao Y, Gao P, Cao Y, Wang Y, Jiang Y (2009) The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. J Antimicrob Chemother 64:764–773CrossRefPubMedGoogle Scholar
  55. Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M (1998) Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. Biochim Biophys Acta Gene Struct Expr 1442:161–169CrossRefGoogle Scholar
  56. Zhang L, Oh Y, Li HY, Baldwin IT, Galis I (2012) Alternative oxidase in resistance to biotic stresses, Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae. Plant Physiol 160:1453–1467CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhou J, Liu L, Shi Z, Du G, Chen J (2009) ATP in current biotechnology, regulation, applications and perspectives. Biotechnol Adv 27:94–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li Hou
    • 1
  • Ling Liu
    • 1
  • Hongfei Zhang
    • 1
  • Lin Zhang
    • 1
  • Lan Zhang
    • 1
  • Jian Zhang
    • 1
    • 2
    • 3
  • Qiang Gao
    • 1
    • 2
    • 3
  • Depei Wang
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation MicrobiologyTianjinPeople’s Republic of China
  2. 2.National and Local United Engineering Lab of Metabolic Control Fermentation TechnologyTianjinPeople’s Republic of China
  3. 3.College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China

Personalised recommendations